Порівняння результатів досліджень зразків-свідків штатного та модернізованого комплектів блоку №2 Южно-Української АЕС Е.У.Гринік, Л.І.Чирко, В.Н.Ревка, Ю.В.Чайковський

Сравнение результатов исследований образцов-свидетелей штатного и модернизованного комплектов блока №2 Южно-Украинской АЕС Э.У.Гриник, Л.И.Чирко, В.Н.Ревка, Ю.В.Чайковский

Необходимым условием безопасной эксплуатации ВВЭР-1000 является сохранение температурного запаса по вязкости корпусных материалов. Со временем, в результате радиационного охрупчивания этот запас, т.е. разница между предельно допустимой температурой эксплуатации T_K^a и критической температурой хрупкости T_K уменьшается, увеличивая вероятность хрупкого разрушения корпуса реактора. Таким образом, безопасность эксплуатации корпуса ВВЭР-1000 обеспечивается только в том случае, если при любых режимах работы, включая аварийные ситуации (например, условия "термошока"), значение T_K остается меньше T_K^a .

Для оценки скорости радиационного охрупчивания (PO) и критической температуры хрупкости периодически проводят исследования механических свойств корпусных материалов в рамках Программы образцов-свидетелей (ОС). Одним из основных требований нормативного документа ПНАЭ Γ -7-002-86 [1] для получения представительных данных было условие однородности облучения образцов Шарпи в группе (\pm 15 % по флюенсу от среднего значения), которые использовались для определения сдвига температуры $T_{\rm K}$. Для штатных контейнерных сборок (КС) разброс по флюенсу в группе образцов Шарпи достигает 35 % из-за азимутального расположения контейнеров с образцами, что вызывало определенное беспокойство относительно достоверности получаемых данных по степени охрупчивания.

На сегодняшний день для корректного определения сдвига критической температуры хрупкости существует два подхода — это проводить реконструкцию испытанных образцовсвидетелей и модернизировать контейнерные сборки.

Учитывая особенность штатных контейнерных сборок (КС), для некоторых блоков ВВЭР-1000, в том числе для энергоблока ЮУАЭС-2, были разработаны модернизированные КС, конструкция которых позволяет получать однородно облученные группы образцов. Таким образом, вопрос о непредставительных данных по охрупчиванию может быть снят. Разброс по флюенсу для группы образцов Шарпи не превышает 10 %

Для модернизированного комплекта 2Л использовались образцы штатных комплектов, которые были переупакованы из цилиндрических в плоские контейнеры. Модернизированные контейнеры размещались в контейнерных сборках (КС) штатной

конструкции на двух этажах. На верхнем и нижнем этаже КС размещалось по одному плоскому контейнеру.

Для мониторинга нейтронного потока в каждом контейнере помещено по два индикатора нейтронного потока (ИНП) на противоположных концах контейнера. ИНП располагаются в углублениях, выполненных в заполнителях.

1. Материалы для исследований

Материалом для изготовления образцов был основной металл и металл сварного шва корпуса реактора блока № 2 Южно-Украинской АЭС (сталь 15Х2НМФА-А и ее сварные соединения) штатный комплект 1Л (включая реконструированные образцы) и модернизированный комплект 2Л. Химический состав основного материала обечайки и металла сварного шва представлены в таблице 1.

Определение флюенсов нейтронов с $E_n > 0.5$ МэВ на образцы-свидетели комплекта 2Л осуществлялось с помощью разработанной в ИЯИ НАНУ методики. Основу методики составляет пакет программ MCSS [2, 3], предназначенный для расчетов функционалов нейтронного потока, воздействующего на ОС в реакторе ВВЭР-1000. По результатам исследований было установлено, что:

- плотность потока нейтронов $\sim 10^{15}$ нейтр/м $^2 \cdot c$
- флюенс нейтронов (E > 0,5 MэB) до $40,2 \cdot 10^{22}$ нейтр/м²

На основании исследования плавких температурных индикаторов было установлено, что температура облучения ОС реактора ВВЭР-1000 не превышает 300 °C.

Таблица 1 Химический состав основного материала обечайки и металла сварного шва

Хим. элемент	Обечайка (поковка 437454)	Металл сварного шва № 3			
	Содержание, % вес				
С	0,17	0,089			
Si	0,21	0,26			
Mn	0,44	1,0			
Сг	1,99	1,74			
Ni	1,19	1,77			
Мо	0,56	0,65			
Cu	0,12	0,045			
S	0,009	0,01			
Р	0,01	0,01			
V	0,09	-			
As	0,011	-			
Со	0,012 -				
Sn	0,0009	-			
SЬ	0,0011	-			

2. Размещение образцов в реакторе.

Для модернизированного комплекта 2Л использовались образцы штатных комплектов, которые были переупакованы из цилиндрических в плоские контейнеры. Модернизированные контейнеры размещались в контейнерных сборках (КС) штатной конструкции на двух этажах. На верхнем и нижнем этаже КС размещалось по одному плоскому контейнеру. Конструкция плоских контейнеров и упаковка образцов в них, а также расположение индикаторов температуры и нейтронного потока показаны на рис.3. Контейнерные сборки с образцами-свидетелями располагаются у внутренней стенки внутрикорпусной шахты в пространстве между выгородкой и блоком защитных труб (рис.1). Комплект 2Л с облучаемыми образцами размещен в пяти двухэтажных сборках. Положение контейнеров с облученными ОС относительно внутри корпусных устройств активной зоны реактора показано на рис. 2.

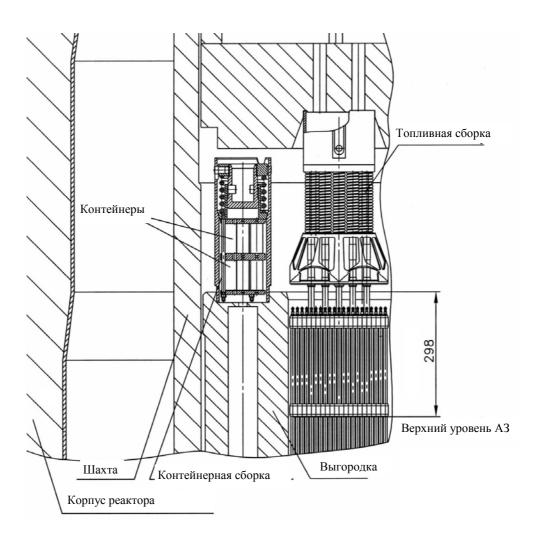


Рис.1. Расположение контейнеров с облученными образцами-свидетелями относительно внутрикорпусных устройств

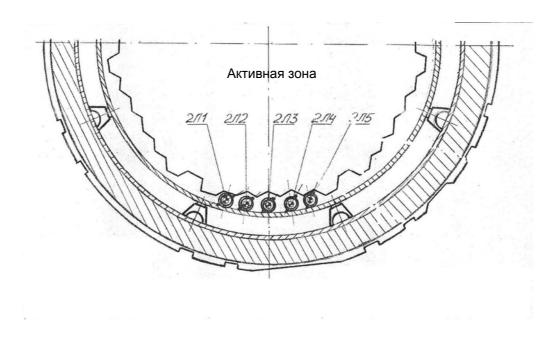


Рис.2. Расположение контейнерных сборок комплекта 2Л относительно активной зоны реактора

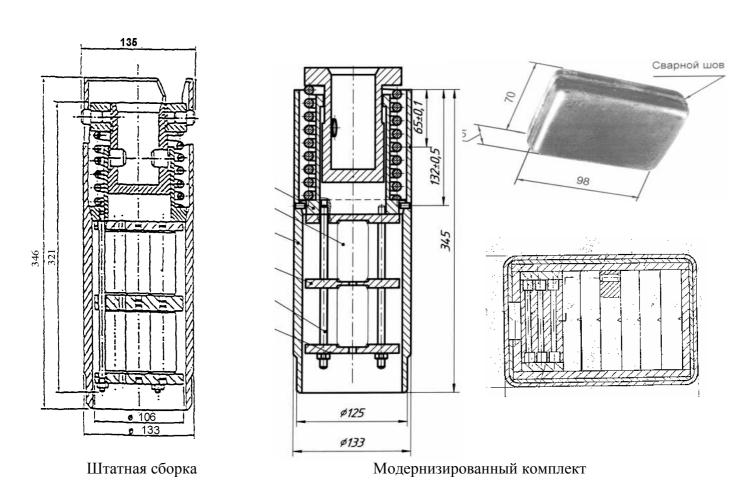


Рис. 3. Контейнерные сборки.

3. Определение сдвига критической температуры хрупкости.

Согласно нормативному подходу ПНАЭ Г-7-002-86 сдвиг критической температуры хрупкости вследствие облучения определяется на основании результатов ударных испытаний образцов Шарпи. Всего было испытано 73 образца. Разброс по флюенсу для групп облученных образцов составляет не более 10 % от среднего значения.

Были получены температурные зависимости ударной вязкости материалов, обработанные с помощью функции гиперболического тангенса. Экспериментальные результаты для необлученных образцов взяты из отчета РНЦ "Курчатовский институт" [4].

Температура хрупкости в исходом $T_{\kappa u}$ (облученном T_{kF}) состоянии определяется следующим образом (см. рис. 4):

- по известному значению предела текучести материала при температуре 20° C в соответствии со значениями, указанными в табл.2, выбирается критериальное значение ударной вязкости (KCV)_I;
- на графике KCV T по оси ординат (ось KCV) откладывается значение $(KCV)_{\rm I}$. Через полученную точку проводится линия, параллельная оси абсцисс (ось температур), до пересечения с кривой ударной вязкости. Температура, соответствующая точке пересечения, обозначается $T_{\rm I}$.

Таблица 2 Критериальные значения ударной вязкости при температуре T_K , °C

Предел текучести при температуре 20°С $R_{p0.2}$, МПа	Ударная вязкость (<i>KCV</i>) _I , Дж·см ⁻²
До 304 включительно	29
304 до 402 включительно	39
402 до 549 включительно	49
549 до 687 включительно	59

- на графике KCV T по оси ординат откладывается значение $1,5(KCV)_I$. Через полученную точку проводится линия, параллельная оси абсцисс, до пересечения с кривой ударной вязкости. Температура, соответствующая точке пересечения, принимается за температуру T_2 .
- если разность температур T_2 T_1 окажется меньше 30°C, то температура T_1 принимается в качестве значения $T_{\kappa u}$ или T_{kF} (для исходного и облученного состояния соответственно).
- если условие $(T_2 T_1) \le 30$ °C не выполняется, то в качестве температуры $T_{\kappa u}$ (T_{kF}) принимают значение $T_2 30$ °C.

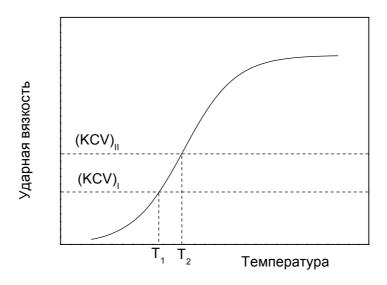


Рис. 4. Схема определения температуры хрупкости

Обобщенные данные испытаний на ударный изгиб образцов Шарпи и результаты определения сдвига критической температуры хрупкости вследствие облучения представлены в табл.3. Для сравнения также показаны значения критической температуры хрупкости материалов в исходном состоянии $T_{\rm K0}$, полученные заводом-изготовителем КР. Дозовые зависимости сдвига критической температуры хрупкости $\Delta T_{\rm F}$ показаны на рис.6.

В исходном состоянии температуры хрупко-вязкого перехода $T_{\rm KU}$ для исследованных материалов равны:

- для основного металла: 79°C;
- для металла СШ: 43°C;
- для металла 3TB: 66°C.

Во всех случаях температура $T_{\rm KU}$ ниже, чем температура $T_{\rm KO}$, из-за различных экспериментальных методик, которые применяются для определения этих величин. Как правило, величина $T_{\rm KO}$ определяет только соответствие этого значения нормативной величине (напр., не выше 0°С для металла шва) и, таким образом, дает более консервативную оценку температуры хрупкости, по сравнению с $T_{\rm KU}$, определяемой с помощью функции гиперболического тангенса.

Температурные зависимости ударной вязкости были аппроксимированы функцией гиперболического тангенса следующего вида:

$$KCV = \left(\frac{USE}{2}\right) \cdot \left(1 + \tanh\left(\frac{T - T_0}{C}\right)\right),$$
 (1)

где KCV – ударная вязкость (удельная работа разрушения), USE – значение ударной вязкости на верхнем шельфе температурной зависимости, T – температура испытаний, T_0 –

температура, соответствующая значению ударной вязкости $\frac{USE}{2}$ и C — параметр, характеризующий наклон температурной зависимости KCV. Ударная вязкость на верхнем шельфе определялась как среднее значение для образцов, которые имели полностью вязкий излом. Параметры T_0 и C определялись методом наименьших квадратов для случая нелинейной зависимости.

Сдвиг ΔT_F определялся как разница между переходными температурами для материала в исходном и облученном состоянии (рис.5).

Для каждого материала были получены дозовые зависимости сдвига критической температуры хрупкости ΔT_F и определены коэффициенты радиационного охрупчивания A_F путем приближения экспериментальных данных степенной функцией, задаваемой следующим уравнением:

$$\Delta T_F = A_F \left(\frac{F_n}{F_0}\right)^n,\tag{2}$$

где F_n - флюенс быстрых нейтронов (E > 0,5 MэВ), $F_\theta = 10^{22}$ нейтр/м², n — показатель степени, равный 1/3.

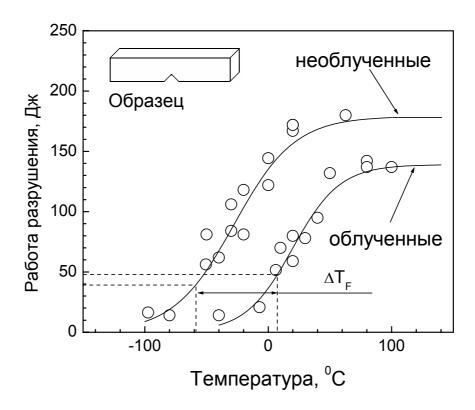


Рис. 5. Схема определения сдвига температуры хрупкости вследствие облучения

Сдвиги критической температуры хрупкости и коэффициенты РО для основного металла и металла СШ

Контейнерная сборка (верхний/нижний ряд)	Флюенс (E > 0,5 МэВ), 10 ²² , нейтр/м ²	7 _{κ0} * ⁾ , °C	Т _{ки} , Т _{кғ} °С	Δ <i>T</i> _F , °C	A _F , °C	USE, Дж/см²
основной металл						
необлученные	-		-79	0	-	267
2Л1 (верхний)	13,1	-12	-50	29	12	224
2Л1 (нижний)	27,3		-39	40	13	230
металл СШ						
необлученные	-		-43	-	-	185
2Л2 (верхний)	10,2	-30	2	45	21	146
2Л2 (нижний)	20,1		20	63	23	128

^{*) –} значения исходной критической температуры хрупкости определены заводомизготовителем КР (данные из Формуляра на образцы-свидетели)

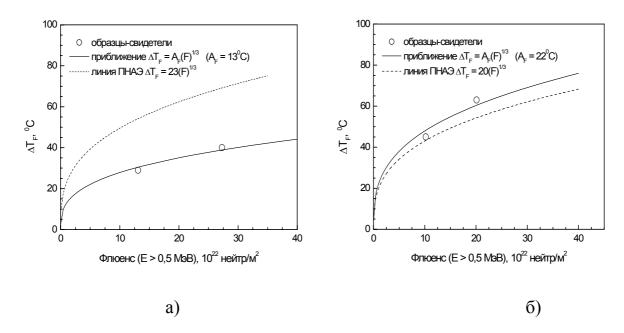


Рис.6. Дозовые зависимости сдвига критической температуры хрупкости ΔT_F для основного металла а) и для металла СШ б)

4. Радиационное охрупчивание материалов

Данные по радиационному охрупчиванию для двух комплектов ОС (включая реконструированные образцы комплекта 1Л) представлены в табл.4 и 5. Зависимость сдвига критической температуры хрупкости $\Delta T_{\rm F}$ для основного материала обечайки и металла СШ от флюенса быстрых (E > 0,5 MэB) нейтронов показана на рис. 7 и 8.

В каждой группе образцов для получения кривой Шарпи и определения сдвига критической температуры хрупкости было не менее 12 образцов. Для основного металла максимальный разброс по флюенсу от среднего значения в группе составлял 25 % для образцов штатного комплекта 1Л [5], 13 % для образцов штатного комплекта с учетом реконструкции [6] и 9 % для образцов модернизированного комплекта 2Л [7]. Для металла СШ максимальный разброс составлял 33 % для образцов штатного комплекта 1Л, 11 % для образцов штатного комплекта с учетом реконструкции и 13 % для образцов модернизированного комплекта 2Л.

Анализ показал, что данные по скорости охрупчивания исследованных материалов, полученные с использованием различных подходов, удовлетворительно согласуются друг с другом (см. рис.7 и 8). Все экспериментальные точки хорошо описываются одной степенной зависимостью $\Delta T_F = A_F \cdot (F)^{1/3}$ с коэффициентами регрессии $A_F = 13,7$ °C для основного металла и $A_F = 23$ °C для металла СШ. Максимальное отклонение экспериментальных точек от линии регрессии равно 5 °C для основного металла и 9 °C для металла СШ.

Как можно увидеть, степень РО основного металла не превышает значение $A_F = 23$ °C, предусмотренное нормативными требованиями. Металл СШ обнаруживает повышенную склонность к радиационному охрупчиванию по сравнению с проектным значением $A_F = 20$ °C. Таким образом, состояние металла СШ № 3 будет определять радиационный ресурс корпуса реактора энергоблока ЮУАЭС-2.

Таблица 4 Радиационное охрупчивание основного металла (комплекты 1Л и 2Л)

Контейнерная сборка (верхний/нижний ряд)	Флюенс (E > 0,5 МэВ), 10 ²² , нейтр/м ²	Т _{ки} , Т _{кғ} °С	Δ <i>T</i> _F , °C	A _F , °C
необлученные	-	-79	-	-
2Л1 (верхний)	13,1	-50	29	12
2Л1 (нижний)	27,3	-39	40	13
1Л1 (верхний)	10,9	-45	34	15
1Л1 (нижний)	31,0	-38	41	13
Реконструкция 1Л	11,8	-43	36	16
Реконструкция 1Л	40,2	-32	47	14

Основной металл (комплекты 1Л и 2Л). ЮУАЭС-2 100 ○ комплект 1Л \triangle комплект 2Л (М) приближение $\Delta T_F = A_F(F)^{1/3} (A_F = 13.7 \, ^{\circ}C)$ 80 60 40 20 (темные символы реконструкция образцов) 0 10 20 50 0 30 Флюенс (E > 0,5 MэB), 10^{22} нейтр/м²

Рис.7. Дозовые зависимости сдвига критической температуры хрупкости $\Delta T_{\rm F}$ для основного металла

Контейнерная сборка (верхний/нижний ряд)	Флюенс (E > 0,5 МэВ), 10 ²² , нейтр/м ²	T _{KИ} , T _{KF} °C	Δ <i>T</i> _F , °C	A _F , °C
необлученные	-	-43	ı	-
2Л2 (верхний)	10,2	2	45	21
2Л2 (нижний)	20,1	20	63	23
1Л2 (верхний)	10,6	4	47	21
1Л2 (нижний)	26,8	28	71	24
Реконструкция 1Л	10,4	16	59	27
Реконструкция 1Л	34,7	29	72	22

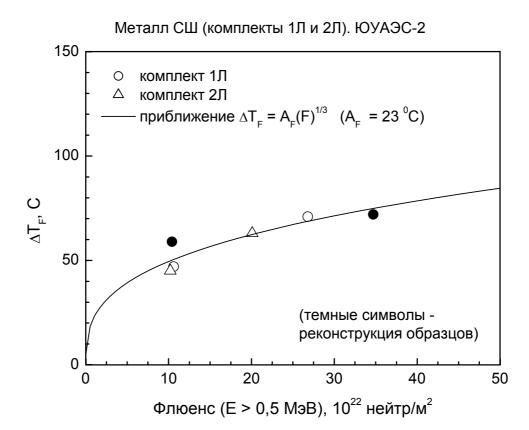


Рис.8. Дозовые зависимости сдвига критической температуры хрупкости $\Delta T_{\rm F}\;$ для металла СШ

Полученное значение $A_F=23^{O}C$ для CШ превышает нормативное значение. Используя значения критические температуры хрупкости T_K , можно оценить ресурс данного корпуса.

Из рисунка 9 видно, что дозовая зависимость T_K , полученная при испытаниях ОС, лежит ниже нормативной зависимости. Следовательно, проектный ресурс KP не будет ограничен при аналогичных режимах эксплуатации блока.

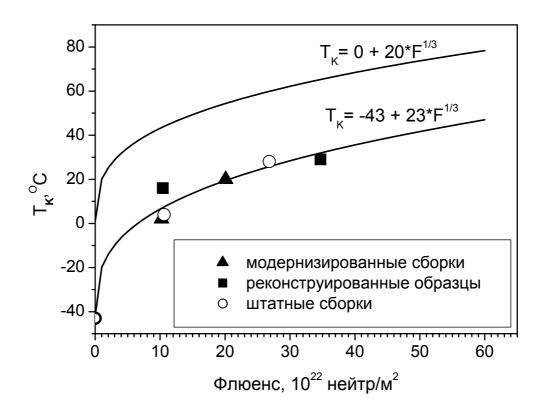


Рис. 9. Дозовая зависимость критической температуры хрупкости для металла СШ

Выводы

- 1. Данные по скорости охрупчивания исследованных материалов, полученные с использованием различных подходов (штатный комплект, реконструированные образцы и модернизированный комплект), удовлетворительно согласуются друг с другом. Экспериментальные данные хорошо описываются степенной зависимостью вида $\Delta T_F = A_F \cdot (F)^{1/3}$ с коэффициентами регрессии $A_F = 13,7$ °C для основного металла и $A_F = 23$ °C для металла СШ.
- 2. Средние значения коэффициентов радиационного охрупчивания A_F равны 13 °C для основного металла и 23 °C для металла СШ. Скорость охрупчивания металла СШ превышают нормативные значения, что, по-видимому, связано с высоким содержанием никеля и марганца в сварном шве.
- 3. В конце 34-й топливной кампании (накопленный флюенс будет равен 34,4·10²² нейтр/м²) критическая температура хрупкости конструктивных элементов КР блока ЮУАЭС-2 будет составлять:
 - 36°C для основного металла нижней обечайки,
 - 50°C для металла сварного шва № 3.
- 4. Очередной комплект ОС целесообразно выгрузить в ППР-2015 (27-я топливная кампания). Рекомендуется исследовать комплект 4Л, в котором образцы СШ размещены только на нижнем этаже. В этом случае будет получен прогноз критической температуры хрупкости металла СШ для флюенса $40\cdot10^{22}$ нейтр/м²., что эквивалентно проектному сроку эксплуатации корпуса реактора 40 лет.

Литература

- 1. ПНАЭ Г-7-002-86 Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок. Введ. 01.07.87. М.: Энергоатомиздат, 1989.
- Гриценко А.В., Буканов В.Н., Васильева Е.Г., Демехин В.Л., Неделин О.В. Расчетное определение некоторых параметров условий облучения образцов-свидетелей корпуса ВВЭР-1000 // Збірник наукових праць Інституту ядерних досліджень. 2000. № 2. С. 65 73.
- Bukanov V.N., Dyemokhin V.L., Gavriljuk V.I., Grytsenko O.V., Nedyelin O.V., Vasylyeva E.G. Overview of the Surveillance Dosimetry Activities in Ukraine // Reactor Dosimetry: Radiation Metrology and Assessment, ASTM STP 1398 (Proc. 10th Intern. Symp. on Reactor Dosimetry, Osaka, Japan, 12 17 Sept. 1999.) ASTM, West Conshohocken, PA, 2001. P. 61 68.
- Исследование первого комплекта образцов-свидетелей блока № 2 Южно-Украинской АЭС после двенадцати кампаний работы реактора // Заключительный отчет по договору № 208-И между РНЦ "Курчатовский институт" и Южно-Украинской АЭС. Инв. № 62-1813 – Москва, 2001. – 111 с.
- 5. Исследование первого комплекта образцов-свидетелей блока № 2 Южно-Украинской АЭС после двенадцати кампаний работы реактора // Заключительный отчет по договору № 208-И между РНЦ "Курчатовский институт" и Южно-Украинской АЭС. Инв. № 62-1813 Москва, 2001. 111 с.
- 6. Результаты исследования 1-го комплекта образцов-свидетелей корпуса реактора блока № 2 Южно-Украинской АЭС путем изготовления и испытания реконструированных образцов на ударный изгиб // Отчет РНЦ "Курчатовский институт". Инв. № 180-35 от 24.04.2005 г. Москва, 2005. 66 с.
- 7. Испытание модернизированного комплекта 2Л образцов-свидетелей второго срока освидетельствования корпуса реактора блока № 2 Южно-Украинской АЭС// Отчет ИЯИ НАНУ Киев, 2006.