Подвійний β-розпад: стан експериментальних досліджень і перспективи

Федор Даневич

Інститут ядерних досліджень НАНУ, Київ, Україна

- вступ
- огляд експериментальних результатів
- проекти
- дослідження 2β-розпаду в ІЯД НАН України
- ВИСНОВКИ

Science Magazine, July 2005

125 найбільш важливих проблем, на вирішенні яких ученим варто зосередитися у найближчі 25 років http://www.sciencemag.org/sciext/125th/

the 1st question:

What is the Universe Made Of? Якізчого побудований Всесвіт?

Стандартна модель частинок

The Standard Model of Elementary Particles

Матерія складається з 12 ферміонів: 6 кварків (u, d, s, c, b, t) 6 лептонів (e, μ , τ , ν_e , ν_μ , ν_τ ,)

Взаємодії завдяки 12 бозонам: 1 γ - електромагнітні 8 глюонів — сильні 3 калібрувальних бозони (W₊, W₋, Z₀) - слабкі

Осциляції нейтрино *→ нейтрино має масу* Темна матерія у Всесвіті *→ нові частинки?*

2 розпад

Подвійне електронне поглинання (2ε), електронне поглинання з вильотом позитрона (εβ⁺), подвійний позитронний розпад (2β⁺)

M. Goeppert–Mayer, **Double** β –**Disintegration** Phys. Rev. 48 (1935) 512

Двонейтринний 2 β розпад, процеси 2 ϵ , $\epsilon\beta^+$, 2 β^+ розпадів 2 β : (A,Z) \rightarrow (A,Z+2) + e⁻ + e⁻ + ν_e + ν_e Лептонний заряд зберігається – дозволений процес

Безнейтринний розпад $(A,Z) \rightarrow (A,Z+2) + e^{-} + e^{-}$

Змінює лептонний заряд на дві одиниці і заборонений у стандартній моделі частинок

0v2β розпад і маса нейтрино

 $\langle \boldsymbol{m}_{v} \rangle = |\Sigma m_{i} U_{ei}^{2}| - ефективна маса нейтрино Майорани$

- Не спостереження $0\nu2\beta$ розпаду на рівні $\langle m_\nu\rangle$ ~ 0.02 еВ буде свідчити про нормальну схему мас нейтрино
- Спостереження 0v2β розпаду вказуватиме на порушення закону збереження лептонного заряду та природу нейтрино як частинки Майорани

Стан експериментальних досліджень

- Двонейтринний 2β-розпад спостережений у 11 ядер (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd та ²³⁸U) з періодом напіврозпаду $T_{1/2} \sim 10^{18}$ 10²⁴ років
- Процеси 2β-розпаду із зменшенням заряду ядра (2ε, εβ⁺, 2β⁺) не спостережені (є лише вказівки на ефект у ядрах ⁷⁸Kr і ¹³⁰Ba)
- Безнейтринний 2β-розпад не спостережений. У найбільш чутливих експериментах встановлені обмеження для ряду ядер (⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe) на рівні $T_{1/2} > 10^{23}-10^{25} \text{ p} \Rightarrow$ обмеження на масу нейтрино $\langle m_{v} \rangle < 0.3 3 \text{ eB}$

• Є повідомлення про спостереження 0v2β-розпаду ⁷⁶Ge з періодом напіврозпаду $T_{1/2} \sim 2 \times 10^{25} \text{ p} \Rightarrow \langle m_v \rangle = 0.3 \text{ eB}$

Задачі 2β експериментів на найближчі 10 років

Перевірка повідомлення про спостереження $0v2\beta$ розпаду ⁷⁶Ge

 Вимірювання характеристик (період напіврозпаду, кутовий розподіл) для кількох ядер (*T*_{1/2} ~ 10²⁵⁻²⁶ років)* • Пошуки $0\nu 2\beta$ розпаду на рівні чутливості $T_{1/2} \sim 10^{26 \cdot 27}$ років з метою визначення схеми масових станів нейтрино $\langle m_{2\beta} \rangle \sim 0.02 - 0.05$ eB

- Пошуки 2ε, εβ+, 2β+ розпадів
- Точне вимірювання 2v2β розпаду

*) *Т*_{1/2} ~ 10²⁵ років: 1 розпад в 1 кг ¹⁰⁰Мо за 2,5 років

Вимоги до детектора 2β-розпаду

Чутливість 2 вкспериментів:

$$T_{1/2} \propto \varepsilon \cdot \delta \sqrt{\frac{m \cdot t}{R \cdot BG}}$$

- $T_{1/2}$ періоду напіврозпаду
- ϵ ефективність реєстрації
- δ концентрація ядер в детекторі
- т маса детектора
- *t* час вимірювань
- *R* енергетична роздільна здатність

BG – фон

- Якнайбільша концентрація і кількість ядер 2β ізотопу
- Здатність вимірювати характеристики 2β подій
- Висока ефективність реєстрації 2β розпаду
- Низький (нульовий) рівень фону
- Висока енергетична роздільна здатність
- Можливість довгострокових (3-10 років) вимірювань

Найбільш перспективні ядра теоретичні розрахунки *Т*_{1/2}^{0v2β}

$$(\mathbf{T}_{1/2}^{0\nu})^{-1} \approx \mathbf{G}^{0\nu 2\beta} (\mathbf{Q}_{2\beta} \mathbf{Z}) |\mathbf{M}^{0\nu 2\beta}|^2 \langle \mathbf{m}_{\nu} \rangle^2$$

G^{0ν2β}(Q_{2β}, Z) – інтеграл по фазовому об'єму

 $M^{0\nu 2\beta}$ — ядерний матричний елемент $\langle m_{\nu} \rangle = |\Sigma m_{j} U_{ej}^{2}|$ — ефективна маса нейтрино

Operator Method)

 $T_{1/2}^{0\nu} \approx 10^{26} (> 10^{27}) \text{ yr}$

 $\langle \boldsymbol{m}_{\nu} \rangle \approx 50$ (20) meV

Nuclear	(R)QI	RPA (Jastrow s.r.c.)	(R)QI	RPA (UCOM s.r.c.)
transition	$M'^{0\nu}$	$T_{1/2}^{0\nu} \left(\langle m_{\beta\beta} \rangle = 50 \text{ meV} \right)$	$M'^{0\nu}$	$T_{1/2}^{0\nu} \left(\langle m_{\beta\beta} \rangle = 50 \text{ meV} \right)$
$^{76}Ge \rightarrow ^{76}Se$	(3.33, 4.68)	$(6.01, 11.9) \times 10^{26}$	(3.92, 5.73)	$(4.01, 8.57) \times 10^{26}$
$^{82}Se \rightarrow {}^{82}Kr$	(2.82, 4.17)	$(1.71, 3.73) \times 10^{26}$	(3.35, 5.09)	$(1.14, 2.64) \times 10^{26}$
${}^{96}Zr \rightarrow {}^{96}Mo$	(1.01, 1.34)	$(7.90, 13.9) \times 10^{26}$	(1.31, 1.79)	$(4.43, 8.27) \times 10^{26}$
$^{100}Mo \rightarrow ^{100}Ru$	(2.22, 3.53)	$(1.46, 3.70) \times 10^{26}$	(2.77, 4.58)	$(8.69, 23.8) \times 10^{25}$
$^{116}Cd \rightarrow ^{116}Sn$	(1.83, 2.93)	$(1.95, 5.01) \times 10^{26}$	(2.18, 3.54)	$(1.34, 3.53) \times 10^{26}$
$^{128}Te \rightarrow ^{128}Xe$	(2.46, 3.77)	$(3.33, 7.81) \times 10^{27}$	(3.06, 4.76)	$(2.09, 5.05) \times 10^{27}$
$^{130}Te \rightarrow ^{130}Xe$	(2.27, 3.38)	$(1.65, 3.66) \times 10^{26}$	(2.84, 4.26)	$(1.04, 2.34) \times 10^{26}$
$^{136}Xe \rightarrow {}^{136}Ba$	(1.17, 2.22)	$(3.59, 12.9) \times 10^{26}$	(1.49, 2.76)	$(2.32, 7.96) \times 10^{26}$

F. Simkovic et al., PRC 77 (2008) 045503

Ф.А.Даневич

24 січня 2012

GERDA

LNGS, Italy

етап

- ≈ 20 кг збагачених ⁷⁶Ge HPGe детекторів (H-M & IGEX)
- Очікуваний фон ~0.001 відліків/(рік кг кеВ)

 $T_{1/2} \sim 3 \times 10^{25} \text{ p},$ $\langle \text{m}_{v} \rangle \sim 0.3 - 0.9 \text{ eB}$

II етап

- Експозиція 100 кг×рік
- Фон ~0.001 відліків/(рік кг кеВ)

 $T_{1/2} \sim 1.5 \times 10^{26}$ yr, $\langle m_{\gamma} \rangle \sim 0.1 - 0.2 \text{ eV}$

Висока енергетична роздільна здатність (FWHM) 2-3 кеВ (0.1%), Радіоактивна чистота HPGe Енергія розпаду менша 2.6 MeB

Чого ми очікуємо від першого етапу експерименту GERDA?

Висока енергетична роздільна здатність ~ 5-7 keV (0.3%) Фон від поверхневої забрудненості кристалів та оточуючих матеріалів

P.Gorla, TAUP 2011 Ф.А.Даневич

Чутливість за 2 роки вимірювань $T_{1/2} \approx 6 \times 10^{24}$ р $\langle m_v \rangle \sim 0.11 - 0.13 \text{ eV}$

Порівняно недороге збагачення, радіочисотота ¹³⁶Хе Прийнятна енергетична роздільна здатність ~ 4% на енергії Q_{ββ} Радіоактивна забрудненість деталей установки

arXiv:1108.4193 P.Barbeau, TAUP 2011

Ф.А.Даневич

KamLAND-Zen

Очікується дуже низький фон Низька енергетична роздільна здатність ~ 11%

Yuri Efremenko, MEDEX 2011, Prague, 14-15 Jun 2011 Alexandre Kozlov, TAUP 2011, Munich, 5-9 Sep 2011 Ф.А.Даневич Щорічна наукова конференція ІЯД

Великий об'єм детектора ⇒ незбагачений Nd Низька енергетична роздільна здатність ~ 7% Радіоактивна забрудненість Nd

J. Hartnell, TAUP 2011, Munich, 5-9 Sep 2011

SuperNEMO

- 100 кг збагаченого ⁸²Se у вигляді фольги, реконструкція треків
- 20 модулів по 5 кг ⁸²Se з радіочистотою на рівні μБк/кг
- Енергетична роздільна здатність ~4% на 3 МеВ

Чутливість*T*_{1/2} ~ 10²⁶ yr ⇒ ⟨*m*_v⟩ ~ 0.1 – 0.05 eB

Експеримент з реконструкцією подій Енергетична роздільна здатність ≈4% Низька ефективність реєстрації (≈30%)

Сцинтиляційні болометри

Astropart.Phys. 34 (2011) 344-353

Чутливість за 5 років вимірювань $T_{1/2} \approx (2-3) \times 10^{26} \text{ p}$ $\langle m_v \rangle \sim 0.04 - 0.07 \text{ eV}$

- Висока енергетична роздільна здатність ~ 5-7 keV (0.3%)
- Низький фон ~ одиниці відліків за рік у тоні в околі **Q**₂₈

Laura Cardani, TAUP 2011, Munich, 5-9 Sep 2011

AMoRE

⁴⁰Ca¹⁰⁰MoO₄ 0.55 kg FOMOS (Russia)

CaMoO₄ cryogenic bolometers [2]

Чутливість за 5 років вимірювань із 100 кг ${}^{40}Ca^{100}MoO_4$ $T_{1/2} \approx 3 \times 10^{26}$ р, $\langle m_v \rangle \sim 0.05$ eB [3]

[1] A.N. Annenkov et al., NIMA 584 (2008) 334[2] S.J. Lee et al., APP 34(2011)732

[3] S.K. Kim et al., MEDEX 2011

18

Ф.А.Даневич

Щорічна наукова конференція ІЯД

24 січня 2012

2001/10 Сцинтиляційний болометр з ZnMoO₄

Висока енергетична роздільна здатність ~ 5-7 keV (0.3%)
Низький фон ~ одиниці відліків за рік у тоні в околі Q₂₈

Чутливість за 5 років вимірювань з 800 кг Zn¹⁰⁰MoO₄: *T*_{1/2} ≈ 9×10²⁶ р *⟨m_y⟩* ~ 0.013 – 0.5 еВ [1]

Доповідь Д.М.Черняка

[1] J. Beeman et al., arXiv:1112.3672v1

Ф.А.Даневич

Щорічна наукова конференція ІЯД

24 січня 2012

Пошук 0v2β розпаду ¹¹⁶Cd iз сцинтилятором ¹¹⁶CdWO₄

1868 г (87% шихти) збагачення ¹¹⁶Cd ≈ 82%

A.S. Barabash et al., JINST 06, (2011) P08011

Чутливість ¹¹⁶Сd експерименту

Збирання детектора

0.28 відліків / (рік кеВ кг) в інтервалі енергій 2.7-2.9 МеВ

Вимірювання продовжуються, очікувана чутливість за 5 років:

 $\square T_{1/2} \sim (0.5\text{-}1.5) \times 10^{24} \text{ p} \rightarrow \langle \text{m}_{\text{v}} \rangle \sim 0.4\text{-}1.4 \text{ eB}$

Доповідь В.В.Кобичева

A.S. Barabash et al., JINST 06, (2011) P08011

Ф.А.Даневич

Щорічна наукова конференція ІЯД

Актуальність досліджень 2 ϵ , $\epsilon\beta^+$, $2\beta^+$

$$(T_{1/2}^{0\nu})^{-1} = C_{mn}^{0\nu} \left(\frac{\left\langle m_{\nu}\right\rangle}{m_{e}}\right)^{2} + C_{m\lambda}^{0\nu} \left\langle \lambda \right\rangle \left(\frac{\left\langle m_{\nu}\right\rangle}{m_{e}}\right) + C_{m\eta}^{0\nu} \left\langle \eta \right\rangle \left(\frac{\left\langle m_{\nu}\right\rangle}{m_{e}}\right) + C_{\lambda\lambda}^{0\nu} \left\langle \lambda \right\rangle^{2} + C_{\eta\eta}^{0\nu} \left\langle \eta \right\rangle^{2} + C_{\lambda\eta}^{0\nu} \left\langle \lambda \right\rangle \left\langle \eta \right\rangle$$

- Можливий внесок правих токів у слабку взаємодію
 Час життя ядер відносно 0νεβ⁺ розпаду залежить від того, який механізм призводить до 0ν2β розпаду: маса нейтрино чи праві токи у слабкій взаємодії [1]
- Можливість резонансного безнейтринного подвійного поглинання (0v2є)
- Ці канали розпаду все не спостережені: *T*_{1/2} > 10¹⁸ - 10²¹ р

[1] M. Hirsch et al., Z. Phys. A 347 (1994) 151

Доповідь В.В.Третяка (резонансні **0**v2є процеси) 22

Ф.А.Даневич

Щорічна наукова конференція ІЯД

24 січня 2012

Пошуки 2β розпаду ¹⁰⁶Cd

Нові обмеження на 2 β процеси у ¹⁰⁶Cd на рівні $T_{1/2} \approx 10^{19} - 10^{21}$ р [2]

Доповідь В.В.Третяка (¹⁰⁶Cd)

[1] P. Belli et al., NIMA 615 (2010) 301[2] P. Belli et al., submitted to PRC

Ф.А.Даневич

Наступний крок: ¹⁰⁶CdWO₄ в HPGe

¹⁰⁶CdWO₄ у збігах / антизбігах з 4-х кристальним HPGe

Ефективність реєстрації ~ 3-8%

Фон – кілька відліків за рік

Чутливість до 2ν єβ⁺ та 2β^{+ 106}Cd: *T*_{1/2} ~ 10²⁰ - 10²¹ p Теорія: 2ν2К 10²⁰ - 5×10²¹ p 2νεβ⁺ 8×10²⁰ - 4×10²² p

Можливий наступний крок:

Розробка ¹⁰⁶CdWO₄ із ¹⁰⁶Cd збідненого на ¹¹³Cd для видалення ^{113m}Cd

2β розпад ⁹⁶Ru

Ф.А.Даневич

Щорічна наукова конференція ІЯД

2 розпад платини

<u>Обмеження на 2β розпад ¹⁹⁰Pt (*T*_{1/2}, p) [1]</u>

εβ+ (2ν+0ν)	>9.2×10 ¹⁵
2v2K	>8.4×10 ¹⁴
0v2K	>5.7×10 ¹⁵
0v2ε (resonant)	>2.9×10 ¹⁶

Радіоактивна забрудненість Pt (мБк/кг)

⁴⁰ K	<25
²²⁸ Th	<7
²²⁶ Ra	<3
^{192m} lr (241 p)	=40

$2\nu 2\beta$ розпад ¹⁰⁰Мо на 0+ збуджений рівень ¹⁰⁰Ru

Низькофонові HPGe спектрометри у підземній лабораторії Гран Сассо

$2\nu 2\beta$ розпад ¹⁰⁰Мо на 0⁺ збуджений рівень ¹⁰⁰Ru

1.2 kg of 100 MoO₃ (99.5%) × 18120 h

 $T_{1/2} = 6.9^{+1.0}_{-0.8}$ (stat.)±0.7(syst.)×10²⁰ yr

P. Belli et al., NPA 846 (2010) 143

висновки

Експерименти з пошуку 0ν2β-розпаду дозволяють:

- визначити природу нейтрино (частинка Дірака чи Майорани)
- виміряти масу нейтрино та з'ясувати схему масових станів
- перевірити збереження лептонного заряду та ряд інших ефектів за межами стандартної моделі частинок

Зараз необхідно перевірити повідомлення про спостереження 0v2 β -розпаду ⁷⁶Ge і, у випадку підтвердження, дослідити кілька ядер з чутливістю $T_{1/2}$ ~10²⁵-10²⁶ р

У випадку спростування цього результату необхідно підвищувати чутливість експериментів до рівня $T_{1/2} \sim 10^{26} - 10^{27}$ р з метою перевірки оберненої схеми масових станів нейтрино ($\langle m_v \rangle \sim 0.05 - 0.02$ эВ).

Сцинтиляційні болометри є перспективними детекторами для пошуку $0v2\beta$ -розпаду на рівні чутливості $T_{1/2} \sim 10^{27}$ р і вище

Важливими задачами є також дослідження двонейтринного каналу 2β-розпаду та пошуки процесів зі зменшенням заряду ядра