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In this report, we present the statistical level density ( ), ,E N Z  for several magic nuclei as a function of 

the total energy , and number of neutrons N and protons Z within the micro-macroscopic approach (MMA) 

[1], with main focus on pairing correlations. This level density  was improved at low excitation energy U 

[1]. The density  was derived as a function of the excitation energy U, ( )S I S−
 , through the system 

entropy, ( )
1/2

,2S aU=  where  is the level density parameter, ( )I S  is the modified Bessel function of 

order v. The orders v = 2 and v = 3 correspond to the cases of neglecting (MMA1) and dominating (MMA2) 

shell contributions, respectively. Taking into account the particle number fluctuations beyond the Bardeen - 

Cooper - Schrieffer (BCS) theory, the pairing gap 0Δ  can be considered as a smooth function of the particle 

number A. The pairing gap 0Δ  is often approximated by the phenomenological quantity 
1/2

0Δ 12 / A=  MeV. 

For the condensation energy cE  and the critical excitation energy cU  for a superfluid-normal phase 

transition, one can use the well-known approximations, ( )2 2
c 3 Δ / 2E a=   and ( )2 2

c c Δ / 4U aT G= + , where 

c 0Δ /CT e=   with the Euler constant C, and G is the mean matrix element of residue interaction. The 

excitation energy U of the system entropy S is shifted over cE  due to superfluidity, and cT  is the evaluated 

critical temperature where superfluidity disappears. In this way, we take into account the nuclear shell and 

pairing effects in terms of the inverse level density parameter /K A a=  and the condensation energy shift 

cE . 

Figure presents a comparison between the MMA approaches for relatively small excitation energies U, 

below neutron resonances, in four complex nuclei 40Ca (a), 56Ni (b), 54Fe (c), and 52Fe (d), and the 

experimental data obtained from the database http://www.nndc.bnl.gov/ensdf. Close points with errors are 

obtained by using the energies and spins of excited states (with spin degeneracies) by the macroscopic 

sample method [1]. The results for MMA2a level density approach (with dominating contributions of shell 

and pairing corrections from [2]) in magic nucleus 40Ca ( c 2.3E =  MeV, c 7.1U =  MeV) with the least mean 

square fit (LMSF) error 1.3=  agrees well with the experimental data obtained by LMS fitting using one 

physical parameter – the inverse level density parameter K. Those for the MMA2b approach (also with 

dominating contributions of these corrections but due to their large derivatives of the shell corrections over 

the chemical potential) in magic nucleus 56Ni ( c 0.8E =  MeV, c 2.5U =  MeV, 2.2 = ) are less in agreement 

with the experimental data when using similar LMS fitting. Pairing effects are larger for 40Ca (a), see the 

difference between dashed and solid lines, in contrast to the 56Ni (b) case. Condensation energies cE  and 

superfluid-normal phase transition energies cU  are marked by black and red arrows, respectively. The range 

between arrows for calcium, 40Ca, overlaps whole excitation energies while for the nickel, 56Ni, there is no 

such overlap. Therefore, we may predict that the pairing effects are easier to detect in 40Ca than in 56Ni. In 

contrast to these close-shell results, one has an intermediate situation for semi-magic 54Fe (c) and open-shell 
52Fe (d) nuclei. 

The largest pairing effect is clearly seen in 40Ca (a) and there is no such effect for 56Ni, though both are 

closed-shell magic nuclei. In contrast to another opinion, we think that we cannot use these properties 

(close/open shell arguments) for evaluation of the pairing contributions. Concerning the difference between 

two symmetric magic 56Ni and open-shell 52Fe nuclei, one can find qualitative agreement with the 

experimental results obtained in Ref. [3] though our theoretical arguments are somewhat different from those 

used in Ref. [3]. Note also that the values of the inverse level density parameter 9.6K =  (a), 27.3 (b), 

17.9 (c), and 17.7 (d) MeV, respectively, are found to be essentially different from those deduced from 

neutron resonances, mainly due to major shell and pairing effects. 

http://www.nndc.bnl.gov/ensdf


 

 

 
Level density (in logarithms) as a function of excitation energy  for low energy states in the magic (close-

shell) 40Ca (a) and 56Ni (b), semi-magic 54Fe (c), and non-magic (open-shell) 52Fe (d) nuclei. Solid lines show 

the MMA approach for minimal values of LMS errors  with pairing condensation being neglected. Dashed 

lines are the same but taking into account the pairing effect through the found condensation energy cE . Blue 

dotted lines present the results of the Fermi gas approach. Experimental close circles are obtained from the 

ENSDF excitation energy data. 

 

As perspectives, we will continue our study, within the MMA, of the effects of nuclear rotations, pairing, 

and collective dynamics within statistical level density. 
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