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1. Introduction

Let’s consider system of N particles, which interact by two-body interactions vi,j. The

Hamiltonian of the system has form

H = T + V =
N
∑

i=1

ti +
1

2

N
∑

i,j=1,i 6=j
vij =

N
∑

i=1

−~2
2m

~∇2 +
1

2

N
∑

i,j=1,i 6=j
vi,j(~ri, ~rj).

This Hamiltonian describes the many-body system. The corresponding Schödinger equation

is the system of N strongly coupled equations.

Consideration of many nucleons in nuclei cames across on difficulties:

• It is difficult to apply the dynamical equations for each nucleon in nuclei, because the

number of nucleon in nuclei is too high.

• It is difficult to apply the statistical equations for nuclei, because the number of nucleon

in nuclei is too small for statistical approach.

• The interaction between nucleon is strong, complex and short-range.

Therefore it is necessary to apply the approximate theory.



2. Hartree approximation

Hartree approximation (1927): The state of any single particle of complex many-body

system is determined by the self-consistent potential formed by interaction of this particle

with all other particles.

Let’s propose that

1) Schödinger single-particle equation for each particle has form

−~2
2m

~∇2ψi(~ri) + Vi(~ri)ψi(~ri) = εiψi(~ri),

where ψi and Vi are wave function and the self-consistent potential for particle i, respectively,

and wave functions obey the normalization condition < ψi|ψi >= 1;

2) the wave function of the total system of N particle is determined as

Ψ = ψ1(~r1)ψ2(~r2)ψ3(~r3)...ψN(~rN).

Than the total energy of the system is

E =< Ψ|H|Ψ >=
N
∑

i=1

< ψi|
−~2
2m

(

d

d~ri

)2

|ψi > +
1

2

N
∑

i,j=1,i 6=j
< ψiψj|vi,j(~ri, ~rj)|ψiψj > .



The wave function can be determined by using the variation principle

δ

(

< Ψ|H|Ψ > −
N
∑

i=1

εi < ψi|ψi >
)

= 0,

where εi are the Lagrangian coefficients related to the normalization condition < ψi|ψi >= 1.

The variations are performed on the functions ψi. Note that

δ < Ψ|H|Ψ >=< δΨ|H|Ψ > + < Ψ|H|δΨ > .

Ψ > is the complex function, therefore we can vary real and imaginary part independently,

which is equivalent to carry out variation on |Ψ > and < Ψ| independently.
By taking the variation we obtain the Schrödinger equation

−~2
2m

(

d

d~ri

)2

ψi +
N
∑

j=1,i 6=j
< ψj|vi,j(~ri, ~rj)|ψj > ψi − εiψi = 0.

The self-consistent potential for particle i is

Vi(~ri) =
N
∑

j=1,i 6=j
< ψj|vi,j(~ri, ~rj)|ψj > .



3. Hartree-Fock approximation

In 1930 V. A. Fock independently pointed out that the Hartree method did not respect the

principle of antisymmetry of the wave function.

It was then shown that a Slater determinant, a determinant of single-particle wave particles

first used by Heisenberg and Dirac in 1926, trivially satisfies the antisymmetric property.

Correct wave function of the total system of N fermions is

Ψ =
1√
N !
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Here wave function ψi(~ri) = ϕi(~ri)ξi contains space ϕi(~ri) and spin ξi parts.

For example, system of two particles

Ψ =
1√
2

∣

∣

∣

∣

∣

ψ1(~r1) ψ1(~r2)

ψ2(~r1) ψ2(~r2)

∣

∣

∣

∣

∣

=
1√
2
[ψ1(~r1)ψ2(~r2)− ψ2(~r1)ψ1(~r2)].

The antisymmetric property is fulfil Ψ(ψ1(~r1), ψ2(~r2)) = −Ψ(ψ2(~r2), ψ1(~r1)) due to anti com-

mutator relation for fermi-particle ψi(~ri)ψj(~rj) + ψj(~rj)ψi(~ri) = δij δ(~ri − ~rj)



The Schrödinger equation for determination of the wave functions and eigenvalue of the

single-particle energy εi is

−~2
2m

(

d

d~ri

)2

ψi(~ri) +
1

2

N
∑

j=1

[(∫

d3rj ψ
∗
j (~rj)vi,j(~ri, ~rj)ψj(~rj)

)

ψi(~ri)

−
∫

d3rj ψ
∗
j (~rj)vi,j(~ri, ~rj)ψj(~ri)ψi(~rj)

]

− εiψi(~ri) = 0.

Note that subscript i describes the number of state and the spin state.

We can rewrite this equation in the form

−~2
2m

(

d

d~ri

)2

ψi(~ri) + Vd(~ri)ψi(~ri) +

∫

d3rj Vex(~ri, ~rj)ψi(~rj)− εiψi(~ri) = 0,

where

Vd(~ri) =
N
∑

j=1

∫

d3rj ψ
∗
j (~rj)vi,j(~ri, ~rj)ψj(~rj)

is the direct self-consistent potential and

Vex(~ri, ~rj) = −
N
∑

j=1

ψ∗j (~rj)vi,j(~ri, ~rj)ψj(~ri)

is the exchange self-consistent potential.



In the case of finite-range interaction the direct potential Vd(~ri) is local, while the exchange

potential Vex(~ri, ~rj) is non-local.

If the exchange particle-particle interaction is zero-range, i.e. vi,j(~ri, ~rj) = v0δ(~ri − ~rj),
than both the exchange potential and Schrödinger equation are local

Vex(~ri, ~rj) = −v0
N
∑

j=1

ψ∗j (~rj)δ(~ri − ~rj)ψj(~ri)

and Schrödinger equation has the form

−~2
2m

(

d

d~ri

)2

ψi(~ri) + Vd(~ri)ψi(~ri)− v0





N
∑

j=1

ψ∗j (~ri)ψj(~ri)



ψi(~ri)− εiψi(~ri) = 0,

Conclusion: Hartree-Fock is microscopic approach for consideration of

many-fermion systems, based on the wave functions and fermion-fermion

potential.



4. Skyrme force.

Skyrme-force nucleon-nucleon interaction

vSkyrme(~r1, ~r2) = t0(1 + x0Pσ)δ(~r1 − ~r2) central term

+
1

2
t1(1 + x1Pσ)[

←
P

2

δ(~r1 − ~r2) + δ(~r1 − ~r2)
→
P

2

]

+t2(1 + x2Pσ)
←
P δ(~r1 − ~r2)

→
P non− local term

+
1

6
t3ρ

α(
~r1 + ~r2

2
)(1 + x3Pσ)δ(~r1 − ~r2) density− dependent term

+iW0

[←
P ×δ(~r1 − ~r2)

→
P

]

(~σ1 + ~σ2) spin− orbit term

where Pσ = 1
2(1 + ~σ1~σ2) =

1
2

(

1 + 2(~S2 − ~s21 − ~s22)
)

) = S(S − 1) − 1 =

{

1, forS = 1

−1, forS = 0
,

P = 1
2i
[~∇1 − ~∇2],

t0, t1, t2, x0, x1, x2, α and W0 are parameters of the Skyrme forces.

Skyrme interaction is zero-range!



The energy density functional

E [ρp(~r), ρn(~r)] =
~
2

2m
[τp(~r) + τn(~r)] + V(~r),

where m is the nucleon mass, τp =
∑Z

i=1 |~∇ψα|2 and τn =
∑N

i=1 |~∇ψα|2 are the proton and

neutron kinetic energies.

The potential energy density functional splits into Skyrme and Coulomb (direct and ex-

change) parts

V(~r) = VSkyrme(~r) + VCoul(~r).

The Skyrme energy density functional is

VSkyrme(~r) = V0 + V3 + Veff + Vfin + Vso + Vsg,

where

V0 =
t0
2
[(1 +

1

2
x0)ρ

2 − (x0 +
1

2
)(ρ2p + ρ2n)]

is a zero range term,

V3 =
1

12
t3ρ

α[(1 +
1

2
x3)ρ

2 − (x3 +
1

2
)(ρ2p + ρ2n)]



is the density dependent term (note, for modern parametrizations α = 1, or 1
3
or 1

6
),

Veff =
1

4
[t1(1 +

1

2
x1) + t2(1 +

1

2
x2)]τρ +

1

4
[t2(x2 +

1

2
)− t1(x1 +

1

2
)](τpρp + τnρn)

is an effective mass term,

Vfin =
1

16
[3t1(1 +

1

2
x1)− t2(1 +

1

2
x2)](∇ρ)2 −

1

16
[3t1(x1 +

1

2
) + t2(x2 +

1

2
)](∇ρn)2 + (∇ρp)2)

is a finite range term,

Vso =
1

2
W0( ~J ~∇ρ + ~Jp~∇ρp + ~Jn~∇ρn)

is a spin-orbit term and

Vsg = −
1

16
(t1x1 + t2x2) ~J

2 +
1

16
(t1 − t2)( ~J2

p + ~J2
n)

is a term due to the tensor coupling with spin and gradient.

The functional employs the usual particle densities ρq =
∑

i ni|ψi|2, ρ = ρp + ρn, and the

spin-orbit densities ~Jq =
∑

iψ
+
i ~σ× ~∇ψi, where ψi are the single-particle wave functions and

q stands for either protons or neutrons.

The Coulomb energy density functional is the sum of direct and exchange terms

VCoul(~r) =
e2

2
ρp(~r)

∫

ρp(~r′)
|~r − ~r′|d~r′ −

3e2

4

(

3

π

)1/3

(ρp(~r))
4/3.



The parameters bi and b
′
i are chosen to give the most compact formulation of the energy

functional, the corresponding mean-field Hamiltonian, and residual interaction. They are

related to the standard Skyrme parameters ti and xi by:

b0 = t0(1 +
1
2x0),

b1 = 1
4

[

t1(1 +
1
2x1) + t2(1 +

1
2x2)

]

,

b2 = 1
8

[

3t1(1 +
1
2x1)− t2(1 + 1

2x2)
]

,

b3 = 1
4
t3(1 +

1
2
x3),

b4 = 1
2
t4,

b′0 = t0(
1
2 + x0),

b′1 = 1
4

[

t1(
1
2 + x1)− t2(12 + x2)

]

,

b′2 = 1
8

[

3t1(
1
2 + x1) + t2(

1
2 + x2)

]

,

b′3 = 1
4t3(

1
2 + x3),



The total binding energy of a nucleus is obtained self-consistently from the energy functional:

E = Ekin + VSk(ρ, τ ) + VSk,ls(ρ, ~J) + VCoul(ρp),

where

Ekin =

∫

d3r
~
2

2m
τ,

ESk =

∫

d3r

{

b0
2
ρ2 +

b3
3
ρα+2 + b1ρτ −

b2
2
ρ∆ρ

−
∑

q

(

b′0
2
ρ2q +

b′3
3
ραρ2q + b′1ρqτq −

b′2
2
ρq∆ρq

)







,

ECoul =
1

2
e2
∫

d3r d3r′ρp(~r)
1

|~r − ~r′|ρp(~r
′)− 3

4
e2
(

3

π

)1
3
∫

d3r[ρp(~r)]
4
3,

and the spin-orbit functional can be written as

ESk,ls =

∫

d3r







−b4ρ~∇ · ~J − b′4
∑

q

ρq(~∇ · ~Jq) +
θls
12

[(

3

2
b1 + b2 − b′1 + 6b′2

)

~J2

−
(

b1 + 2b2 −
1

2
b′1 + 3b′2

)

∑

q

~J2
q











.



This spin-orbit functional encompasses two different options, namely, one either ignores the

~J2 contributions (θls = 0) or takes them into account (θls = 1). Furthermore, the spin-orbit

functional is given in the extended form of which allows a separate adjustment of isoscalar and

isovector spin-orbit force. The standard Skyrme forces use the particular combination b′4=b4

which was motivated by the derivation from a two-body zero-range spin-orbit interaction, but

these particular settings are not obligatory when taking the viewpoint of an energy-density

functional.

ESk,ls =

∫

d3r







−b4ρ~∇ · ~J − b′4
∑

q

ρq(~∇ · ~Jq) +
θls
12

[(

3

2
b1 + b2 − b′1 + 6b′2

)

~J2

−
(

b1 + 2b2 −
1

2
b′1 + 3b′2

)

∑

q

~J2
q











.



The Skyrme Parametrizations

Parameters of the Skyrme forces.

Force t0 t1 t2 t3 x0 x1 x2 x3

SkM* -2645.0 410.0 -135.0 15595.0 0.090 0.0 0.0 0.0

SkT6 -1794.2 294.0 -294.0 12817.0 0.392 -0.5 -0.5 0.5

SLy4 -2488.913 486.818 -546.395 13777.0 0.8340 -0.3438 -1.0 1.3540

SkI1 -1913.619 439.809 2697.594 10592.267 -0.954536 -5.782388 -1.287379 -1.561421

SkI3 -1762.88 561.608 -227.090 8106.2 0.3083 -1.1722 -1.0907 1.2926

SkI4 -1855.827 473.829 1006.855 9703.607 0.405082 -2.889148 -1.325150 1.145203

SkP -2931.70 320.618 -337.409 18708.96 0.29215 0.65318 -0.53732 0.18103

SkO -2103.653 303.352 791.674 13553.252 -0.210701 -2.810752 -1.461595 -0.429881

SkO’ -2099.419 301.531 154.781 13526.464 -0.029503 -1.325732 -2.323439 -0.147404



Parameters of the Skyrme forces.

Force b4 b′4 α ~
2/2m θls

SkM* 65.0 65.0 1/6 20.7525 0

SkT6 53.5 53.5 1/3 20.750 1

SLy4 61.5 61.5 1/6 20.73553 0

SkI1 62.130 62.130 1/4 20.7525 0

SkI3 94.254 0.0 1/4 20.7525 0

SkI4 183.097 -180.351 1/4 20.7525 0

SkP 50.0 50.0 1/6 20.73 1

SkO 176.578 -198.7490 1/4 20.73553 0

SkO’ 143.895 -82.8888 1/4 20.73553 1



Parameters of the new Skyrme forces (various Lyon force)

SLy4 SLy5 SLy6 SLy7 SkM∗

t0 (MeV fm3) -2488.91 -2484.88 -2479.50 -2482.41 -2645.00

t1 (MeV fm5) 486.82 483.13 462.18 457.97 410.00

t2 (Mev fm5) -546.39 -549.40 -448.61 -419.85 -135.00

t3 (Mev fm3+3α) 13777.0 13763.0 13673.0 13677.0 15595.0

x0 0.834 0.778 0.825 0.846 0.09

x1 -0.344 -0.328 -0.465 -0.511 0.00

x2 -1.000 -1.000 -1.000 -1.000 0.00

x3 1.354 1.267 1.355 1.391 0.00

α 1/6 1/6 1/6 1/6 1/6

W0 (MeV fm5) 123.0 126.0 122.0 126.0 130.0



Properties of symmetric infinite nuclear matter for the Skyrme effective interactions.

E

A
=

3~2

10m

(

3π2

2

)2/3

ρ2/3 +
3

8
t0ρ +

3

80
[3t1 + (5 + 4x2)t2]

(

3π2

2

)2/3

ρ5/3 +
1

16
t3ρ

α+1.
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ρExp∞ = 0.16± 0.005 fm−3; KExp
∞ = 210± 20 MeV

Force SLy4 SLy5 SLy6 SLy7 SkM∗

ρ∞ (fm−3) 0.160 0.160 0.159 0.158 0.160

kF (fm−1) 1.333 1.334 1.330 1.328 1.334

av (MeV) -15.969 -15.983 -15.920 -15.894 -15.770

K∞ (MeV) 229.9 229.9 229.8 229.7 216.6

m∗∞/m 0.70 0.70 0.69 0.69 0.79

asym (MeV) 32.00 32.03 31.96 31.99 30.03

κ (E1;T = 1) 0.25 0.25 0.25 0.25 0.53

asurf (MeV) (Z/A = 0.5) 18.11 18.04 17.36 17.00 17.38

asurf (MeV) (Z/A = 0.3916) 16.67 16.56 15.98 15.66 16.01

K∞ = 9ρ0

(

d2E(ρ)/A

dρ2

)

ρ=ρ0

= −3~
2

5m

(

3π2

2

)2/3

ρ
2/3
0 +

3

8
[3t1 + (5 + 4x2)t2]

(

3π2

2

)2/3

ρ5/3 +
9

16
α(α + 1)t3ρ

α+1
0



m∗∞
m

=

(

1 +
1

16

2m

~2
ρ0[3t1 + (5 + 4x2)t2]

)−1
;

m∗

m

∣

∣

∣

∣

isovect

=
1

1 + κ
= 1 +

m

2~2
[t1(1 +

x1
2
) + t2(1 +

x2
2
)]

asym =
1

2

d2E(ρ)/A

dI2
=

1

3

~
2

2m

(

3π2

2

)2/3

ρ2/3 − 1

4
t0(x0 +

1

2
)ρ

− 1

24

(

3π2

2

)2/3

[3t1x1 − (5 + 4x2)t2]ρ
5/3 − 1

24
t3(x3 +

1

2
)ρα+1

I =
N − Z
A





5. Gogny force.

Finite-range force

V (~r1, ~r2) =
2
∑

i=1

e−(~r1−~r2)
2/µ2i [Wi +BiPσ −HiPτ −MiPσPτ ]

+ iW0(~σ1 + ~σ2)~k × δ(~r1 − ~r2)~k + t3(1 + Pσ)δ(~r1 − ~r2)ρ1/3(
1

2
(~r1 + ~r2))

Pσ =
1

2
(1 + ~σ1~σ2) =

1

2

(

1 + 2(~S2 − ~s21 − ~s22)
)

= S(S − 1)− 1 =

{

1, for S = 1

−1, for S = 0

where

i µi fm Wi Bi Hi Mi MeV W0 MeV fm5 t0 MeV fm4

1 0.7 -402.4 -100 -496.2 -23.56 115 1350

2 1.2 -21.30 -11.77 37.27 -68.81



6. Schrödinger equation within HF+Skyrme force model.

Within the Hartree1Fock approximation, these single particle wave functions and their

corresponding single particle energies are obtained from the self-consistent equation:
{

−~∇ ~
2

2m∗q(r)
~∇ + Uq(~r) + δq,protUCoul(~r)− i ~Wq(~r)(~∇× σ)− ei)

}

φqi (~r, s) = 0

where q = protons, neutrons,

~
2

2m∗q(r)
=

~
2

2m
+

1

4
[t1(1 + x1/2) + t2(1 + x2/2)]ρ(~r)−

1

4
[t1(1/2 + x1) + t2(1/2 + x2)]ρq(~r),

Uq(~r) = t0[(1 + x0/2)ρ(~r)− (1/2 + x0)ρq(~r)]

+
1

12
t3
{

(1 + x3/2)(2 + α)ρα+1(~r)− (x3 + 1/2)
[

2ρα(~r)ρq(~r) + αρα−1(~r)(ρ2p(~r) + ρ2n(~r

+
1

4
[t1(1 + x1/2) + t2(1 + x2/2)]τ +

1

4
[t2(x2 + 1/2)− t1(x1 + 1/2)]τq

+
1

8
[t2(1 + x2/2)− 3t1(1 + x1/2)]∇2ρ(~r) +

1

8
[3t1(x1 + 1/2) + t2(x2 + 1/2)]∇2ρq(~r)

+
1

8
(t1 − t2) ~Jq −

1

8
(t1x1 + t2x2) ~J,

~Wq(~r) =
1

2
W0(~∇ρ(~r) + ~∇ρq(~r)), UCoul(~r) =

e2

2
ρp(~r)

∫

ρp(~r′)
|~r − ~r′|d~r′ −

3e2

4

(

3

π

)1/3

(ρp(~r))
4/

τq(~r) =

Nq
∑

i=1,s

∣

∣

∣

~∇ψqi (~r, s)
∣

∣

∣

2

, ~Jq(~r) =

Nq
∑

i=1,s,s′
ψq∗i (~r, s

′)~∇ψqi (~r, s)× 〈s′|~σ|s〉.



0 1 2 3 4 5
0,00

0,03

0,06

0,09

 Exp

 ETF

 SHF

 Shell

Proton densities in 40Ca

r,fm

(r)
,fm

-3

The density distribution, binding energy, root mean square charge radii, single-particle level

structure near the Fermi energy are well described in the framework of HF.



Binding energy and RMS charge radii.

Nucleus Binding energy, MeV RMS charge radii, fm

SkM∗ exp SkM∗ exp

16O 131.5 127.6 2.79 2.73

40Ca 347.9 342.1 3.50 3.49

48Ca 428.1 416.0 3.52 3.48

56Ni 495.1 484.0 3.75 3.75

90Zr 796.6 783.9 4.28 4.37
140Ce 1188.0 1172.7 4.88 4.88
208Pb 1652.7 1636.5 5.49 5.50
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7. Numerical solution of Schrödinger equation.

Let’s consider for simplicity Schrödinger equation for proton in nucleus with Z protons

[− ~
2

2m
∇2 + V ]Ψ = EΨ

where

V = VCoul(r) + VCR(r) + iWCI(r) + (VSR(r) + iWSR(r))~
2(~S~L),

VCoul(r) =







(Z−1)e2
r , r ≥ RCoul,

(Z−1)e2
RCoul

[

3
2
− r2

2R2
Coul

]

, r < RCoul,

is the Coulomb energy,

VCR(r) =
V0

1 + exp ((r −RC)/dC)
,

WCR(r) =
W0

1 + exp ((r −RCW/dCW )
,

VLS(r) =
d

dr

VSR
1 + exp ((r −RSR)/dSR)

,

WLS(r) =
d

dr

WSR

1 + exp ((r − RSW)/dSW)
.

are the central real and imaginary potentials, and spin-orbital real and imaginary potentials.



Note that for neutron the Coulomb potential omits and other potentials are the same, but

the differences are related to the parameter values.

The total wave function is

Ψ =
ψjℓ(r)

r
Ylm(Ω)ξs.

Separation of the variables appearing in the complete Schödinger equation leads to the usual

radial equation for the each value of the orbital and total angular momenta ℓ and j
{

− d2

dr2
− ℓ(ℓ + 1)

r2
− k2

E
[E − (VCoul(r) + VCR(r) + iWCI(r))

−(VSR(r) + iWSR(r))~
2(j(j + 1)− ℓ(ℓ + 1)− s(s + 1))/2]

}

ψjℓ = 0

where k = (2mE/~2)1/2.



This equation can be written in the form

d2

dr2
ψ(r) = A(r)ψ(r).

We introduce the auxiliary function

ζ(r) = ψ(r)− h2

12
A(r)ψ(r),

where h is step of finite difference algorithm. For function ζ there is Noumerov (Boris

Vasil’evich Noumerov) algorithm based on the finite difference formula for three consecutive

points on a mesh with step h,

ζi+1(ri+1) =

[

2 +
h2Ai

1− (h2/12)Ai

]

ζi(ri)− ζi−1(ri−1).

The boundary conditions at r = 0 is ψ(r) = 0.

Asymptotic at r →∞ for bound levels E < 0 is ψ(r) ∼ exp [−
√

−2mE/~2r].
Asymptotic at r →∞ for quasi-stationary levels E > 0 is

ψ(r) ∼ sin [
√

2mE/~2r + δℓ − ℓπ/2], where δℓ is scattering phase.



Relativistic mean field equations

The basic Ansatz of the RMF theory is a Lagrangian density where nucleons are described

as Dirac particles which interact via the exchange of various mesons. The Lagrangian density

considered is written in the form:

L = ψ̄(i/∂ −M)ψ + 1
2
∂µσ∂

µσ − U (σ)− 1
4
ΩµνΩ

µν+
1
2
m2
ωωµω

µ − 1
4
~Rµν

~Rµν + 1
2
m2
ρ~ρµ~ρ

µ − 1
4
FµνF

µν

gσψ̄σψ − gωψ̄/ωψ − gρψ̄/~ρ~τψ − eψ̄/Aψ

(1)

The meson fields included are the isoscalar σ meson, the isoscalar-vector ω meson and the

isovector-vector ρ meson. The latter provides the necessary isospin asymmetry.

The arrows in Eq. (1) denote the isovector quantities. The Lagrangian contains also a

non-linear scalar self-interaction of the σ meson.

U (σ) =
1

2
m2
σσ

2 +
1

3
g2σ

3 +
1

4
g3σ

4 (2)

This term is important for appropriate description of surface properties [?]. M, mσ, mω and

mρ are the nucleon-, the σ-, the ω- and the ρ-meson masses respectively, while gσ, gω, gρ and

e2/4π = 1/137 are the corresponding coupling constants for the mesons and the photon. The

field tensors of the vector mesons and of the electromagnetic fields take the following form:

Ωµν = ∂µων − ∂νωµ (3)



~Rµν = ∂µ~ρν − ∂ν~ρµ (4)

F µν = ∂µAν − ∂νAµ (5)

The variational principle gives the equations of motion. The mean field approximation is

introduced at this stage by treating the fields as the c-number or classical fields. This results

into a set of coupled equations namely the Dirac equation with potential terms for the nucleons

and the Klein-Gordon type equations with sources for the mesons and the photon. For the

static case, along with the time reversal invariance and charge conservation the equations get

simplified. The resulting equations, known as RMF equations have the following form.

The Dirac equation for the nucleon:

{−iα∇ + V (r) + β[M + S(r)]}ψi = εiψi, (6)

where V (r) represents the vector potential:

V (r) = gωω0(r) + gρτ3ρ0(r) + e
1 + τ3
2

A0(r), (7)

and S(r) is the scalar potential:

S(r) = gσσ(r) (8)

the latter contributes to the effective mass as:

M ∗(r) =M + S(r). (9)



The Klein-Gordon equations for the meson and the electromagnetic fields with the nucleon

densities as sources:

{−∆+m2
σ}σ(r) = −gσρs(r)− g2σ2(r)− g3σ3(r) (10)

{−∆+m2
ω}ω0(r) = gωρv(r) (11)

{−∆+m2
ρ}ρ0(r) = gρρ3(r) (12)

−∆A0(r) = eρc(r) (13)

The corresponding densities are:

ρs =
A
∑

i=1

niψ̄i ψi.

ρv =
A
∑

i=1

niψ
+
i ψi.

ρ3 =
Z
∑

p=1
niψ

+
p ψp −

N
∑

n=1
niψ

+
n ψn.

ρc =
Z
∑

p=1
niψ

+
p ψp.

(14)

Here the sums are taken over the particle states only. This implies that the contributions

from negative-energy states are neglected (no-sea approximation), i.e. the vacuum is not

polarized. The π meson does not contribute in the present relativistic mean field (Hartree)



approximation because of its pseudo nature. The occupation number ni is introduced to

account for pairing which is important for open shell nuclei. In the absence of pairing it takes

the value one (zero) for the levels below (above) the Fermi surface. In the presence of pairing

the partial occupancies (ni) are obtained in the constant gap approximation (BCS) through

the well known expression:

ni =
1

2
( 1 − εi − λ

√

(εi − λ)2 +∆2
) (15)

The εi is the single-paricle energy for the state i and chemical potential or Fermi energy λ for

protons (neutrons) is obtained from the requirement
∑

i

ni = the number of protons (Z)or the number of neutrons (N) (16)

The sum is taken over protons (neutrons) states. The gap parameter ∆ is calculated from the

observed odd-even mass differences.
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Thanks for your attention!


