В. Ю. Денисов Інститут ядерних досліджень Національна академія наук України Київский НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ім. ТАРАСА ШЕВЧЕНКО

Розподіл густини в ядрах

План

- 1. Вступ
- 2. Макро-мікро підход
- 3. Функціонали густини енергії Skyrme, ETF
- 4. Енергії зв'язку, розподіл щільності тощо
- 5. Властивості ядер, далеких від лінії бета-стабільності
- 6. Ядерно-ядерні потенціали та ETF
- 7. Ядерно-ядерні потенціали та розподіл густини
- 8. Висновки

Експериментальні наближення

HO Harmonic-oscillator model:

$$\rho(r) = \rho_0 (1 + \alpha (r/a)^2) \exp(-(r/a)^2)$$

$$\alpha = \alpha_0 a_0^2 / (a^2 + \frac{3}{2} \alpha_0 (a^2 - a_0^2))$$

$$a_0^2 = (a^2 - a_p^2) A / (A - 1)$$

$$\alpha_0 = (Z - 2) / 3; \quad a_p^2 = \frac{2}{3} \langle r^2 \rangle_{\text{proton}}$$

$$\rho(r) = \begin{cases} 2 - \alpha_0 p_0 (c + r/a)^2 & \text{if } r < R, \\ 0 & \text{for } r \ge R, \end{cases}$$

$$j_0(qr) \text{ denotes the Bessel function of order zero}$$

 $\sum_{n=1}^{\infty} i_n(n\pi r/R)$ for $r \leq R$

MHO Modified harmonic-oscillator model, with the same expression
for
$$\rho(r)$$
 as in HO but with α as an additional free parameter

2pF Two-parameter Fermi model

$$\rho(r) = \rho_0/(1 + \exp((r-c)/z))$$

3pF Three-parameter Fermi model

$$\rho(r) = \rho_0(1 + wr^2/c^2)/(1 + \exp((r - c)/z))$$

3pG Three-parameter Gaussian model

$$\rho(r) = \rho_0(1 + wr^2/c^2)/(1 + \exp((r^2 - c^2)/z^2))$$

UG Uniform Gaussian model

$$\rho(r) = \rho_0 \int \exp(-(r-x)^2)/g^2)x^2 dx$$

Макроскопічний + мікроскопічний підхід передбачає Z=114 та N=184

Extended Thomas-Fermi model

Equations of Extended Thomas-Fermi (ETF) approach

$$\frac{\delta\varepsilon(\rho_n,\rho_p)}{\delta\rho_p} - \lambda_p = 0 \qquad \frac{\delta\varepsilon(\rho_n,\rho_p)}{\delta\rho_n} - \lambda_n = 0$$

 $\mathcal{E}(
ho_n,
ho_p)$ - Energy-density functional depended on neutron and proton densities

$$\frac{\delta}{\delta\rho_q} = \frac{\partial}{\partial\rho_q} - \nabla \frac{\partial}{\partial(\nabla\rho_q)} + \Delta \frac{\partial}{\partial(\Delta\rho_q)}$$

- Variational derivative

$$\int d\vec{r} \rho_{n(p)}(\vec{r}) = N(Z)$$

Conservation of proton and neutron number leads to extremum with conditions and to the Lagrange coefficients

The ground-state energy of the system can be evaluated by using energy density functional, which depends on the density and density derivative (*Hohenberg P., Kohn W. Theorem*)

$$E[\rho_n, \rho_p] = \int d\vec{r} \varepsilon[\rho_n(\vec{r}), \rho_p(\vec{r})]$$

Skyrme energy-density functional

Another form EDF, when terms with kinetic energy are merged with the single kinetic energy term. The effective mass is introduced.

$$\varepsilon = \frac{\hbar^2}{2m_n *} \tau_n + \frac{\hbar^2}{2m_p *} \tau_p + \frac{1}{2} t_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \times \left(\rho_n^2 + \rho_p^2 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2} \tau_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 + \left(1 + \frac{1}{2} x_0 \right) \right] + \frac{1}{2}$$

$$\frac{1}{12}t_{3}\rho^{\alpha}\left[\left(1+\frac{1}{2}x_{3}\right)\rho^{2}-\left(x_{3}+\frac{1}{2}\right)\times\left(\rho_{n}^{2}+\rho_{p}^{2}\right)\right]$$
$$+\frac{1}{16}\left[3\ t_{1}\left(1+\frac{1}{2}x_{1}\right)-t_{2}\left(1+\frac{1}{2}x_{2}\right)\right]\left(\nabla\rho\right)^{2}-\frac{1}{2}\left(\nabla\rho\right)^{2}\right]$$

$$\frac{1}{16} \left[3t_1 \left(x_1 + \frac{1}{2} \right) + t_2 \left(x_2 + \frac{1}{2} \right) \right] \times \left((\nabla \rho_n)^2 + (\nabla \rho_p)^2 \right) +$$

$$\frac{1}{2}W_0 \left[J \nabla \rho + J_n \nabla \rho_n + J_p \nabla \rho_p \right] + \varepsilon_{coul}$$

$$f_q = \frac{m}{m_q^*}, f_q = 1 + \frac{2m}{\hbar^2} \left[\frac{1}{4} \left[t_1 \left(1 + \frac{1}{2} x_1 \right) + t_2 \left(1 + \frac{1}{2} x_2 \right) \right] \rho + \frac{1}{4} \left[t_2 \left(x_2 + \frac{1}{2} \right) - t_1 \left(x_1 + \frac{1}{2} \right) \right] \rho_q \right]$$

If $x_1 = x_2 = 0$, $x_3 = 1$, $\alpha = 1$, [SIII set]

 $+\mathcal{E}_{coul}$,

Kinetic energy

• Thomas-Fermi $\tau_{TF,n(p)} = k \rho_{n(p)}^{5/3}$

$$k = \frac{5}{3} (3\pi^2)^{\frac{2}{3}}$$

• Ћ² derivative correction terms

$$\tau_{2q} = b_1 \frac{(\nabla \rho_q)^2}{\rho_q} + b_2 \nabla^2 \rho_q + b_3 \frac{(\nabla f_q \nabla \rho_q)}{f_q} + b_4 \rho_q \frac{\nabla^2 f_q}{f_q} + b_5 \rho_q \left(\frac{\nabla f_q}{f_q}\right)^2 + b_6 h_m^2 \rho_q \left(\frac{\vec{W}_q}{f_q}\right)^2$$

 $b_1 = 1/36$ $b_2 = 1/3$ $b_3 = 1/6$ $b_4 = 1/6$ $b_5 = -1/12$ $b_6 = 1/2$ $h_m = \hbar^2/2m$

Spin-orbit contribution

$$\vec{W}_q = \frac{\delta \varepsilon(r)}{\delta \vec{J}_q(r)} = \frac{W_0}{2} \nabla(\rho + \rho_q)$$

Coulomb EDF

with direct and exchange term in Slater form $\varepsilon_{col} = \frac{1}{2}e^2\rho_p(r)\int d\vec{r}' \frac{\rho_p(r')}{|\vec{r} - \vec{r}'|}$

$$-\frac{3}{4}e^{2}\left(\frac{3}{\pi}\right)^{1/3}\rho_{p}^{4/3}(r)$$

For Spherical Systems $\varepsilon_{col} = \frac{1}{2} e^2 \rho_p(r) \left[\int_0^r \rho_p(r') r' dr' + \frac{1}{r} \int_r^\infty r'^2 \rho_p(r') dr' \right] - \frac{3}{4} e^2 \left(\frac{3}{\pi} \right)^{\frac{1}{3}} \rho_p^{\frac{4}{3}}(r).$

Equations of Extended Thomas-Fermi (ETF) approach

 $\begin{cases} A_{nn}\Delta\rho_{n} + A_{np}\Delta\rho_{p} + B_{nn}(\nabla\rho_{n})^{2} + B_{np}(\nabla\rho_{p})^{2} + \\ D_{np}(\nabla\rho_{n}\cdot\nabla\rho_{p}) + F_{n} + \lambda_{n} = 0 \\ A_{pp}\Delta\rho_{p} + A_{pn}\Delta\rho_{n} + B_{pp}(\nabla\rho_{p})^{2} + B_{pn}(\nabla\rho_{n})^{2} + \\ D_{pn}(\nabla\rho_{p}\cdot\nabla\rho_{n}) + F_{p} + C_{p} + \lambda_{p} = 0 \end{cases}$

Boundary conditions

At *r=0:* density finite

Parameters sets for various Skyrme force parametrizations

	SIII	SkM*	SLy4*	SkP	T6
t ₀	-1128.75	-2645.0	-2488.913	-2931.70	-1794.20
t ₁	395.0	410.0	486.818	320.62	294.0
t ₂	-95.0	-135.0	-546.395	-337.41	-294.0
t ₃	14000.0	15595.0	13777.0	18708.97	12817.0
x ₀	0.45	0.09	0.8340	0.29215	0.392
x ₁	0.0	0.0	-0.3438	0.65318	-0.5
x ₂	0.0	0.0	-1.0	-0.53732	-0.5
X ₃	1.0	0.0	1.3540	0.18103	0.5
α	1.0	1.0 /6.0	1.0 /6.0	1.0 /6.0	1.0 /3.0
W ₀	120.0	130.0	123.0	100.0	107.0

Binding energy, root mean squared radii and chemical potentials for stable nuclei

Nucle	Е _{експ}	E	$< r_{p}^{2} > 1/2$	$< r_{p}^{2} > 1/2$	$< r_{n}^{2} > 1/2$	λ_n	$\lambda_{\mathbf{p}}$
us	[MeV]	[MeV]	exp	[fm]	[fm]	[MeV]	[MeV]
			[fm]				
⁴⁰ Ca	342.1	340.4	3.450	3.231	3.209	-12.14	-10.61
⁴⁸ Ca	416.1	418.0	3.451	3.327	3.504	-6.25	-18.93
⁵⁸ Ni	506.5	505.8	3.769	3.562	3.618	-11.25	-11.54
⁹⁰ Zr	783.9	789.9	4.258	4.070	4.171	-8.65	-14.54
¹¹⁴ Sn	971.6	981.8	4.602	4.391	3.492	-8.36	-14.41
¹⁴⁰ Ce	1172.7	1181.8	4.880	4.682	4.819	-6.60	-16.62
²⁰⁸ Pb	1636.5	1638.4	5.503	5.330	5.486	-5.29	-17.44

Relative deviations of binding energy

A

Розподіл густини протонів та нейтронів

Density distribution in various approaches

Total density distribution ⁴⁸Ca

Total density distribution ²⁰⁸Pb

Neutron distribution

Neutron distribution

Нейтронно збагачені ядра та нейтронна кожа

Neutron-reach and proton reach nuclei

Nucleus	E _{exp}	E	$< r_{p}^{2} > 1/2$	$< r_{n}^{2} > 1/2$	λ _n	λ _p
	[MeV]	[MeV]	[fm]	[fm]	[MeV]	[MeV]
³² Ca		203.3	3.101	2.922	-22.491	-0.609
⁵⁶ Ca	449.6	455.6	3.448	3.754	-2.443	-25.243
⁴⁸ Ni		346.3	3.433	3.328	-19.707	-2.510
⁵⁰ Ni	385.5	385.3	4.664	4.790	-17.643	-4.414
⁶⁰ Ni	526.9	528.7	3.591	3.672	-10.012	-13.157
⁶² Ni	545.3	549.1	3.620	3.725	-8.879	-14.704
⁶⁴ Ni	561.8	567.3	3.648	3.776	-7.845	-16.185
⁷⁸ Ni	641.4	655.6	3.822	4.125	-3.157	-23.388
¹⁰⁰ Sn	825.8	818.8	4.248	4.243	-13.38	-7.84
¹²⁴ Sn	1049.4	1059.5	4.490	4.654	-5.699	-18.460
¹³² Sn	1102.7	1103.8	4.568	4.798	-3.98	-21.35
¹⁴² Sn		1142.6	4.658	4.964	-2.216	-24.581
¹⁵² Sn		1164.8	4.751	5.134	-0.806	-27.375

Density distribution in various approaches

r, fm

Density distribution in superheavy nuclei

Binding energy, root mean squared radii and chemical potentials for stable nuclei

Z	Ν	E	E _{TF}	< r _p >	< r _n >	λ_n [MeV]	$\lambda_p [MeV]$
		[MeV]	[MeV]	[fm]	[fm]		
114	182	2113.1	2099.83	6.019	6.198	-5.218	-15.604
118	182	2124.1	2109.91	6.045	6.204	-5.761	-14.318
120	182	2130.8	2112.70	6.061	6.210	-6.064	-13.711
126	182	2134.9	2112.32	6.109	6.230	-6.973	-11.934
126	184	2146.5	2127.50	6.122	6.248	-6.773	-12.253
164	272	2665.9	-	6.871	7.016	-4.336	-15.012
164	318	2848.4	-	7.084	7.316	-1.735	-19.920

Density distributions in nuclei and properties of nucleus-nucleus potentials

$$V(R) = V_{coul}(R) + V_{N}(R) + V_{rot}(R),$$
$$V_{rot}(R) = \frac{\hbar^{2} L (L+1)}{2 \mu R^{2}}$$

$$V(R) = E_{12}(R) - (E_1 + E_2)$$

$$E_{12} = \int \varepsilon \left[\rho_{1p}(\vec{r}) + \rho_{2p}(\vec{r}, R), \ \rho_{1n}(\vec{r}) + \rho_{2n}(\vec{r}, R) \right] d\vec{r}$$

$$E_1 = \int \varepsilon \left[\rho_{1p}(\vec{r}), \ \rho_{1n}(\vec{r}) \right] d\vec{r}$$

$$E_2 = \int \varepsilon \left[\rho_{2p}(\vec{r}), \ \rho_{2n}(\vec{r}) \right] d\vec{r}$$

Potentials in various approaches

The ETF potential is evaluated for densities with various values of diffuseness *d*

$$\rho_{n(p)}(r) = \rho_{0n(p)} / \{1 + \exp[(r - R_{n(p)}) / d\}$$

Obtained ETF potentials are approximated by $V(R)=-V_0/{1+exp[(R-R_{pot})/a]}$ at large distances

¹⁶O+²⁰⁸Pb fusion cross sections

Висновки

- ETF із Skyrme EDF це прості та потужні інструменти для вивчення розподілів нуклонів
- Енергії зв'язування добре описані в ETF разом із Skyrme EDF.
- Ядерно-ядерний потенціал можна оцінити в рамках ETF за допомогою Skyrme EDF.
- Ядерно-ядерний потенціал залежить від розподілу густини в ядрах і параметра дифузності.
- Поперечний переріз злиття ядер при підбар'єрних енергіях залежить від розподілу густини в ядрах і параметра дифузії.

Thanks for attention!!!