Сучасні наближення до альфа-розпаду, альфа-захвату та альфа-ядерної взаємодії

В. Ю. Денисов

ІЯД НАН України

План

- 1. Вступ
- 2. UMADAC
- Емпіричні співвідношення для періодів напіврозпаду альфарозпаду
- 4. Корисні результати
- 5. Висновок

Alpha-decay: $(Z,A)=(Z-2,A-4)+^{4}He$ It takes place in $^{8}Be=^{4}He+^{4}He$ and in nuclei with Z>50.

Енергетична умова альфа-распаду

Q= B(Z-2,A-4)+B(Z=2,A=4)-B(Z,A) > 0

В(Z,A) - енергія зв'язку родительського ядра В(Z=2,A=4) = 28,295660 MeV - енергія зв'язку альфа-частинки

В(Z-2,A-4) - енергія зв'язку дочірнього ядра

Теорія альфа-розпаду (1928 р.)

Георгий Антонович ГАМОВ

(20-II-1904, Одесса, Украина — 19-VIII-1968, Боулдер, США)

Edward CONDON and Ronald GERNI

Розпад квазістаціонарного стану при суббар'єрному

Теорія альфа-розпаду

$$T_{1/2} = \hbar \ln 2/\Gamma$$
$$\Gamma = \frac{1}{4\pi} \int \gamma(\theta, \varphi) d\Omega$$

- період напіврозпаду альфарозпаду

- загальна ширина альфа-розпаду

 $\gamma(\theta,\varphi) = \hbar \cdot 10^{\nu} t(Q_{\alpha},\theta,\ell)$

- часткова ширина альфа-розпаду для альфа-випромінювання в напрямку **θ**

$$t(Q_{\alpha},\theta,\ell) = \frac{1}{1 + \exp\left\{\frac{2}{\hbar} \int_{a(\theta)}^{b(\theta)} dr \sqrt{2\mu(V(r,\theta,\ell,Q_{\alpha}) - Q_{\alpha})}\right\}}$$

- коефіцієнт пропускання для підбар'єрного тунелювання альфа-частинки в напрямку *θ, μ* - зведена маса альфа-частинки і дочірнього ядра.

$$\begin{aligned} \mathbf{B3acmodis} \ \mathbf{anb} \mathbf{\phi} \mathbf{a} - \mathbf{vactuhku} \ \mathbf{ta} \ \mathbf{sdpa} \\ \mathbf{v}(\theta) &= \mathbf{v}_{C}(r,\theta) + \mathbf{v}_{N}(r,\theta) + \mathbf{v}_{\ell}(r) \\ & \left\{ \frac{2Ze^{2}}{r} \left(1 + \frac{3R^{2}}{5r^{2}} \beta_{2} Y_{20}(\theta) + \frac{3R^{4}}{9r^{4}} \beta_{4} Y_{40}(\theta) \right), \quad r \geq r_{C}(\theta) \\ \mathbf{v}_{C}(r,\theta) &= \left\{ \frac{2Ze^{2}}{r_{C}(\theta)} \left(\frac{3}{2} - \frac{r^{2}}{2r_{C}(\theta)^{2}} + \frac{3R^{2}}{5r_{C}(\theta)^{2}} \beta_{2} Y_{20}(\theta) \left(2 - \frac{r^{3}}{r_{C}(\theta)^{3}} \right) + \frac{3R^{4}}{9r_{C}(\theta)^{4}} \beta_{4} Y_{40}(\theta) \left(\frac{7}{2} - \frac{5r^{2}}{2r_{C}(\theta)^{2}} \right) \right), \quad r < r_{C}(\theta) \\ & \left\{ \frac{3R^{4}}{9r_{C}(\theta)^{4}} \beta_{4} Y_{40}(\theta) \left(\frac{7}{2} - \frac{5r^{2}}{2r_{C}(\theta)^{2}} \right) \right\}, \quad r < r_{C}(\theta) \\ & \left\{ \frac{v_{\ell}(r)}{r_{\ell}} = \frac{V(Q_{\alpha})}{1 + \exp\left[\left(r - r_{m}(\theta) \right) / d \right]} \right\} \end{aligned}$$

Альфа-випромінювання з деформованого ядра

Параметризація ядерної частини потенціалу

$$v_{N}(r,\theta,Q_{\alpha}) = \frac{V(Q_{\alpha})}{1 + \exp[(r - r_{m}(\theta))/d]}$$

$$V(Q_{\alpha}) = v_{1} + \frac{v_{2}Z}{A^{1/3}} + v_{3}\frac{N - Z}{A} + \frac{v_{4}Q_{\alpha}}{A^{1/3}} + \frac{v_{5}Y_{20}(\theta)\beta_{2}}{A^{1/6}}$$

$$r_{m}(\theta) = r_{1} + R(1 + \beta_{2}Y_{20}(\theta) + \beta_{4}Y_{40}(\theta))$$

$$R = r_{2}A^{1/3}\left(1 + \frac{r_{3}}{A} + r_{4}\frac{(N - Z)}{A}\right)$$

$$d = d_{1} + d_{2}A^{-1/3}$$

Частота зіткнення альфа-частинки бар'єром

$$v = 19 + S + v_0 \sqrt{Z} A^{1/6} + v_1 (A - 2Z) / A + v_2 Z / \sqrt{Q_\alpha} + v_3 ((-1)^{\ell} - 1) + v_4 \beta_2 + v_5 \beta_4 + v_6 \ell (\ell + 1) A^{-1/6}$$

Кутовий момент альфа-частинки $\left|I_{f}-I_{i}\right| \leq \ell_{\alpha} \leq I_{f}+I_{i}$

Правило відбору парності $\frac{\pi_f}{-1} = (-1)^{\ell_{\alpha}}$

 $Q_{\alpha} = B(Z-2,A-4) + B(Z=2,A=4) - B(Z,A).$

 π_i

Тут В(Z,A) - енергія зв'язку ядер.

Однак якщо ми використовуємо дефект атомної маси або енергію зв'язку атома В_а (який зазвичай наводиться в таблицях), тому слід враховувати внесок електронної оболонки атома, тому

 $Q_{\alpha} = B_{a}(Z-2,A-4) + B_{a}(Z=2,A=4) - B_{a}(Z,A) + k[Z^{\epsilon} - (Z-2)^{\epsilon}],$

де kZ^ε енергія зв'язку атомної оболонки (атомних електронів),

k=8.7 eV τa ε=2.517 for Z≥60;

k=13.6 eV τa ε=2.408 for Z<60.

Вплив енергії зв'язку атомних електронів

Isotope	$T_{1/2}^{\exp}$, s	$T_{1/2}$, s (with screening)	$T_{1/2}$, s (without screening)
$^{180}\mathrm{W}$	5,68·10 ²⁵	3,62·10 ²⁵	$1,04 \cdot 10^{26}$
145 Pm	1,99·10 ¹⁷	5,68·10 ¹⁷	$1,14 \cdot 10^{18}$
148 Sm	$2,21 \cdot 10^{23}$	$5,44 \cdot 10^{23}$	$1,41 \cdot 10^{24}$
²⁴⁴ Pu	3,14.1015	6,57·10 ¹⁵	$1,40.10^{16}$

Поперечний переріз альфа-поглинання

UMADAC Model of Alpha Deca

United Model of Alpha-Decay and Alpha-Capture

- V. Yu. Denisov, H. Ikezoe // Phys. Rev. C. 2005. Vol. 72. P. 064613, 9p
- V. Yu. Denisov, A. A. Khudenko. Alpha-nucleus interaction potential // At. Data Nucl. Data Tabl., – 2009. – Vol. 95. – P. 815-835; Erratum, doi:10.1016/j.adt.2010.12.002.
- V. Yu. Denisov, A. A. Khudenko. A decays to ground and excited states of heavy deformed nuclei // Phys. Rev. C. – 2009. – Vol. 80. – P. 034603, 10p; Erratum, Phys. Rev. C. 82 (2010) 059902(E).
- V. Yu. Denisov, A. A. Khudenko. Alpha-nucleus interaction potential // Nucl. Phys. At. Energy. – 2008. – №.3 (25). – Р. 33-38.
- В.Ю. Денисов, А.А. Худенко. Периоды альфа распада, сечения альфа – захвата и альфа – ядерное взаимодействие // Известия РАН. – 2010. – Том. 74. - №. 4. – С. 594 - 598.

UMADAC: вхідні дані

- 1 The precise experimental data for the branching ratios, the half-lives, ground state spins and the mass excesses from the Nubase-2003 and Nuclear wallet cards (August 2008) are used.
- 2 The quadrupole and hexadecapole deformations of daughter nuclei are taken into account (the values of the corresponding parameters β_2 and β_4 were mainly extracted from the RIPL-2 or Möller et al. ADNDT59, 185 (1995) database).
- 3 The effect of atomic electrons is taken into account.
- 4 344 ground-state-to-ground-state alpha-decay half-lives.
- 5 The alpha-capture reaction cross-sections of ²⁰⁸Pb, ²⁰⁹Bi, ⁵⁹Co and ^{40,44}Ca are considered.
- 6 By using 4 and 5 we determine 22 parameters of the UMADAC, related to alpha-nucleus potential (15 parameters) and assault frequency (7 parameters).

Вхідні дані

Враховано точні експериментальні дані для переходів з основного стану в основний стан в 344 ядрах (коефіцієнти розгалуження, періоди напіврозпаду і надлишки маси взяті з карт Nubase-2003 і Nuclear wallet (11 квітня 2008 р.)).

Ядра з 106≤А≤261, 52≤Z≤107 були розлянуто. Енергії яльфа-частинки Е_α варіюються в діапазоні 1.9MeV≤E_α≤25MeV.

UMADAC: Alpha-Capture Cross Sections

A

RMS errors for alpha-decay halflives for GS-GS transitions

$$\delta = \sqrt{\frac{1}{N-1} \sum_{k=1}^{N} \left[\log_{10} \left(T_{1/2}^{\text{theor}} \right) - \log_{10} \left(T_{1/2}^{\text{exp}} \right) \right]^2}$$

Total	e-e nuclei	e-o nuclei	o-e nuclei	o-o nuclei	
0,6199	0,2980	0,7805	0,7613	0,7405	UMADAC
1,0245	0,5205	1,1661	1,3453	1,2617	N. Dasgupta-Schubert, M. A. Reyes, ADNDT 93, 907 (2007).
1,1209	0,3922	1,4850	1,3783	1,3426	R. Moustabchir, G. Royer, Nucl. Phys. A683, 266 (2001).
1,1344	0,3652	1,5510	1,3635	1,3390	E. L. Medeiros, M. M. N. Rodrigues, S. B. Duarte, O. A. P.Tavares, J. Phys.G 32, B23 (2006).
1,3926	1,3067	1,4389	1,5728	1,2828	P. Möller, J. R. Nix, KL.Kratz, At. Data Nucl. Data Tabl. 66, 131 (1997).

Partial half-lives of GS-GS alpha-transitions and total alpha-decay half-lives

Nucleus	$T_{1/2}$	$B^{ m tot}_{_lpha}$, %	$T_{1/2} / B_{_lpha}^{ m tot}$, s	$B^{\mathrm{g.s.} ightarrow\mathrm{g.s.}}_{_{lpha}}$, %	$T_{1/2}/B^{\mathrm{g.s.} ightarrow\mathrm{g.s.}}_{lpha$, s
²³⁸ ₉₂ U	4.468·10 ⁹ y	100	$1.413 \cdot 10^{17}$	79.00	$1.785 \cdot 10^{17}$
²³⁶ ₉₄ Pu	2.858 y	100	9.210·10 ⁷	69.26	$1.302 \cdot 10^8$
¹⁸¹ ₈₀ Hg	3.6 s	31	11.6 c	0.18	$2.00 \cdot 10^3$
²²³ ₉₀ Th	600 ms	100	0.60 c	10	6.00
²⁴¹ ₉₅ Am	432.2 у	100	$1.364 \cdot 10^{10}$	0.34	$4.01 \cdot 10^{12}$
²³⁷ ₉₃ Np	2.144 10 ⁶ y	100	6.766·10 ¹³	0.44	$1.538 \cdot 10^{16}$
²²⁰ ₈₉ Ac	26.36 ms	100	2.636.10-2	3	0.879
$^{206}_{85}{ m At}$	1836 s	0.89	2.06·10 ⁵	0.008	2.30.107
$^{172}_{~77}{ m Ir}$	4.4 s	2	$2.20 \cdot 10^2$	0	-
¹⁹⁶ ₈₃ Bi	306 s	0.00115	2.66.107	0	-
²¹⁰ ₈₃ Bi	5.012 d	1.32.10-4	3.281.1011	0	-

Effects of quadrupole and hexadecapole deformations

Nuclear part of alpha-nucleus potential, UMADAC

Alpha-decay from ground into ground and excited states

Transition	Q, MeV	ℓ_{\min}	$B^{ ext{theor}}(\%)$	$B^{\exp}(\%)$	$T_{1/2}^{\exp}(\mathrm{s})$	$T_{1/2}^{\text{theor}}(s)$	HF			
$^{222}_{88}\text{Ra} \rightarrow ^{218}_{86}\text{Rn}$										
$0^+ \rightarrow 0^+$	6,717	0	96,90	96,88	37,3	43,64	0,86			
$0^+ \rightarrow 2^+$	6,393	2	3,05	3,07	1,19E3	1,38E3	0,86			
$^{230}_{92}\text{U} \rightarrow ^{226}_{90}\text{Th}$										
$0^+ \rightarrow 0^+$	6,034	0	67,40	70,12	2,67E6	2,63E6	1,01			
$0^+ \rightarrow 2^+$	5,962	2	32,00	25,35	5,62E6	7,27E6	0,77			
$^{234}_{92}U \rightarrow ^{230}_{90}T$	h									
$0^+ \rightarrow 0^+$	4,899	0	71,38	72,28	1,09E13	1,10E13	0,99			
$0^+ \rightarrow 2^+$	4,846	2	28,42	25,49	2,73E13	3,11E13	0,88			
$^{236}_{92}U \rightarrow ^{232}_{90}$	Th									
$0^+ \rightarrow 0^+$	4,614	0	74,00	72,72	9,99E14	1,16E15	0,86			
$0^+ \rightarrow 2^+$	4,565	2	26,00	25,15	2,84E15	3,36E15	0,85			
$^{248}_{96}\text{Cm} \rightarrow ^{244}_{94}$	Pu									
$0^+ \rightarrow 0^+$	5,205	0	81,90	67,61	1,46E13	1,38E13	1,06			
$0^+ \rightarrow 2^+$	5,161	2	18,03	28,89	6,65E13	3,23E13	2,06			

Емпіричні співвідношення для періодів напіврозпаду альфа-розпаду

Geiger-Nettol law (1912): $log_{10}(T_{1/2}) = aQ^{1/2}+b$

Viola-Seaborg, Möller, Royer, Sobiczewski etc: $log_{10}(T_{1/2}) = (aZ+b)Q^{1/2}+cZ+d+h$

Open questions:

- 1. Problem of consistency: Relationship for <u>total</u> halflives, but Q-value for alpha-transitions are used for GS-GS transitions.
- 2. Both the orbital momentum and the parity of alpha transitions are ignored.

We propose new empirical relationships for alpha-decay half-lives, which

- Consider only ground-state-to-ground-state alphatransitions (consistency between energy of transition and the partial half-life);
- 2. Take into account the spins and parities initial and final states;
- 3. Consider even-even, even-odd, odd-even, odd-odd nuclei separately;
- 4. Dedicate to full range (Z>50,N>100) of nuclei;
- 5. Dedicate to range of heavy (Z>82, N>126) of nuclei;
- 6. Dedicate to range of (rest of nuclei) of nuclei;
- V. Yu. Denisov, A. A. Khudenko. Alpha decay half-lives: Empirical relations // Phys. Rev. C. – 2009. – Vol. **79**. – P. 054614, 5p; Erratum, Phys. Rev. C. 82 (2010) 059901(E).
- 2. В.Ю. Денисов, О.О. Худенко. Емпіричні співвідношення для періодів альфа-розпаду // Укр. Фіз. Журн. – 2009. – Т. **54**, №11. – С.1074-1077.

Empirical relationship for total range of nuclei

$$\log_{10}\left(T_{1/2}^{e-e}\right) = -26.1721 - 1.1549 \frac{A^{1/6}Z^{1/2}}{\mu} + \frac{1.6088Z}{\sqrt{Q}}$$

$$\log_{10}(T_{1/2}^{e-o}) = -30.2365 - 1.0726 \frac{A^{1/6}Z^{1/2}}{\mu} + \frac{1.6910Z}{\sqrt{Q}} + \frac{0.7198\sqrt{\ell(\ell+1)}}{Q} \sqrt[6]{A} - 0.6965((-1)^{\ell} - 1)$$

$$\log_{10}(T_{1/2}^{o-e}) = -30.0842 - 1.0853 \frac{A^{1/6}Z^{1/2}}{\mu} + \frac{1.6925Z}{\sqrt{Q}} + \frac{0.2453\sqrt{\ell(\ell+1)}}{Q} \sqrt{A}$$
$$- 0.6406((-1)^{\ell} - 1)$$

$$\log_{10}(T_{1/2}^{o-o}) = -30.8222 - 0.9874 \frac{A^{1/6}Z^{1/2}}{\mu} + \frac{1.6577Z}{\sqrt{Q}} + \frac{0.5893\sqrt{\ell(\ell+1)}}{Q} \sqrt[6]{A} - 0.2914((-1)^{\ell} - 1)$$

RMS errors for total range of nuclei

$$\delta = \sqrt{\frac{1}{N-1} \sum_{k=1}^{N} \left[\log_{10} \left(T_{1/2}^{\text{theor}} \right) - \log_{10} \left(T_{1/2}^{\text{exp}} \right) \right]^2}$$

Total	E-E	E-O	O-E	0-0	
0.5488	0.3308	0.6177	0.6772	0.6916	Empirical relationships for total range of nuclei
0.6199	0.2980	0.7805	0.7613	0.7405	UMADAC
1.0146	0.4225	1.3585	1.2624	1.0940	D. N. Poenaru, IH. Plonski, W. Greiner, Phys. Rev. C 74, 014312 (2006).
1.0245	0.5205	1.1661	1.3453	1.2617	N. Dasgupta-Schubert, M. A. Reyes, At. Data and Nucl. Data Tabl. 93, 907 (2007).
1.1209	0.3922	1.4850	1.3783	1.3426	R. Moustabchir, G. Royer, Nucl. Phys. A683, 266 (2001).
1.1344	0.3652	1.5510	1.3635	1.3390	E. L. Medeiros, M. M. N. Rodrigues, S. B. Duarte, O. A. P. Tavares, J. Phys.G 32, B23 (2006).
1.3926	1.3067	1.4389	1.5728	1.2828	P. Möller, J. R. Nix, KL.Kratz, At. Data Nucl. Data Tabl. 66, 131 (1997).

RMS errors for range of heavy nuclei (Z>82, N>126)

total	E-E	E-O	O-E	0-0	
0.5291	0.1907	0.6610	0.7590	0.5388	Empirical relationship for range of heavy nuclei
0.7094	0.3001	0.9542	0.9110	0.7753	UMADAC
1.2408	0.2970	1.8106	1.4845	1.4833	P. Möller, J. R. Nix, KL.Kratz, At. Data Nucl. Data Tabl. 66, 131 (1997).
1.2591	0.3894	1.6645	1.5171	1.7708	N. Dasgupta-Schubert, M. A. Reyes, At. Data and Nucl. Data Tabl. 93, 907 (2007).
1.2607	0.2686	1.9108	1.5780	1.1897	D. N. Poenaru, IH. Plonski, W. Greiner, Phys. Rev. C 74, 014312 (2006).
1.3500	0.3188	2.0332	1.6298	1.4300	A. Sobiczewski, A. Parkhomenko, Phys. At. Nucl. 69, 1155 (2006).
1.4484	0.2250	2.1482	1.6657	1.8440	R. Moustabchir, G. Royer, Nucl. Phys. A683, 266 (2001).
1.5002	0.3579	2.2642	1.6775	1.8392	E. L. Medeiros, M. M. N. Rodrigues, S. B. Duarte, O. A. P. Tavares, J. Phys.G 32, B23 (2006).
1.7017	0.2271	2.5168	1.9323	2.2389	M. Gupta, T.W. Burrows, Nucl. Data Sheets 106, 251 (2005).

RMS errors for range of light nuclei

	Total	E-E	E-O	O-E	0-0
Empirical relationship for range of light nuclei	0.4955	0.2674	0.5767	0.5834	0.6653
E. L. Medeiros, M. M. N. Rodrigues, S. B. Duarte, O. A. P. Tavares, J. Phys.G 32, B23 (2006).	0.7750	0.3731	0.8440	1.0658	0.9606
Royer G., Zhang H.F. Phys. Rev. C 77 037602 (2008)	0.8114	0.4843	0.8408	1.1144	0.9635
N. Dasgupta-Schubert, M.A. Reyes. ADNDT 93 (2007) 907-930.	0.8184	0.6046	0.6957	1.2076	0.8613
P. Möller, J. R. Nix, KL.Kratz, At. Data Nucl. Data Tabl. 66, 131 (1997).	1.4955	1.7221	1.1570	1.6586	1.1735

APPLICATIONS

- It is found many nature nuclei, which are marked as stable now, however they have finite alpha-decay half-lives, which we evaluated.
- Alpha-decay half-lives are evaluated for nuclei (902) with $Q_{\alpha} > 0$
- Cases of poorly evaluated alpha-decay half-lives are discussed.

_	²⁰⁸ Pb	alph	a-decay	half-	life:
---	-------------------	------	---------	-------	-------

T _{1/2}	References
$1.44 \cdot 10^{126}$ s	Denisov V. Yu., Khudenko A. A. // Phys. Rev. C. – 2009. – Vol. 79. – P. 054614
$\sim 10^{125} \text{ s}$	Moustabchir R., Royer G. // Nucl. Phys. A. – 2001. – Vol. 683. – P.266-278.
$4.77 \cdot 10^{119} \text{ s}$	Dasgupta-Schubert N., Reyes M. A. // At. Data and Nucl. Data Tabl. – 2007. – Vol. 93. – P. 907-930.
$3.66 \cdot 10^{121} \text{ s}$	Möller P., Nix J. R., Kratz KL. // At. Data Nucl. Data Tabl. – 1997. – Vol. 66. – P. 131-343.
$5.54 \cdot 10^{129} \text{ s}$	Medeiros E. L., Rodrigues M. M. N., Duarte S. B., Tavares O. A. P. // J. Phys.G. – 2006. – Vol. 32. – P. B23-B30.

Alpha-emitters considered as natural stable nuclei with $T_{1/2}$ <10³⁷sec. ($T_{1/2}$ in seconds)

Isotope	Abund., %	ℓ_{lpha}	Q, MeV	T _{1/2} Exp	T _{1/2} UMADAC	T _{1/2} Emp Rel Total	T _{1/2} Royer	T _{1/2} Dasgupta- Schubert	T _{1/2} Möller	T _{1/2} Medeiros
142Ce	11.114	0	1,3177	>1,58.1024	6,94·10 ³⁵	1,35·10 ³⁵	$4,15 \cdot 10^{34}$	9,27.1033	8,04.1030	5,50·10 ³⁵
145Nd	8.300	0	1,5984		1,03.1031	1,15·10 ³¹	1,91·10 ²⁹	$2,77 \cdot 10^{29}$	1,41.1027	2,01.1030
149Sm	13.820	0	1,8926	>6,13.1022	3,37.1026	$4,10.10^{26}$	$1,22 \cdot 10^{25}$	1,93.1025	2,08.1023	9,08·10 ²⁵
150Sm	7.380	0	1,4714		9,70·10 ³⁵	1,58·10 ³⁵	4,67·10 ³⁴	9,12·10 ³³	2,94.1031	6,84·10 ³⁵
156Dy	0.060	0	1,7839	>3,16.1025	2,18.1032	4,54·10 ³¹	1,45·10 ³¹	3,47.1030	3,03.1028	1,64.1032
162Er	0.140	0	1,6698	>4,42.1021	6,91·10 ³⁶	$2,24 \cdot 10^{36}$	6,03·10 ³⁵	8,80.1034	1,56.1033	1,05.1037
168Yb	0.130	0	1,9771	>4,10.1021	5,64·10 ³¹	2,09·10 ³¹	6,49·10 ³⁰	1,40.1030	4,03.1028	7,83·10 ³¹
170Yb	3.040	0	1,7647		$4,24 \cdot 10^{36}$	9,08·10 ³⁵	$2,43 \cdot 10^{35}$	3,41.1034	$1,22 \cdot 10^{33}$	$4,45 \cdot 10^{36}$
176Hf	5.260	0	2,2861		6,14.1027	2,15.1027	7,48.1026	2,15.1026	$1,07 \cdot 10^{25}$	6,98·10 ²⁷
177Hf	18.600	2	2,2700		8,25.1028	8,49·10 ³⁰	$1,78 \cdot 10^{27}$	4,03.1027	$2,26 \cdot 10^{26}$	$1,27 \cdot 10^{28}$
178Hf	27.280	0	2,1086		1,22.1031	2,81.1030	8,81·10 ²⁹	1,90.1029	$1,14 \cdot 10^{28}$	1,09.1031
180W	0.120	0	2,5379	>2,21.1025	3,62.1025	1,11.1025	4,06.1024	1,35.1024	9,28.1022	3,11.1025
184Os	0.020	0	2,9936	>1,77.1021	1,06.1021	3,76.1020	$1,57 \cdot 10^{20}$	7,39·10 ¹⁹	6,17.1018	8,31.1020
185Re	37.400	2	2,2245		1,97.1032	2,06.1033	5,77·10 ³⁰	7,47.1030	$3,52 \cdot 10^{29}$	3,42.1031
187Os	1.960	0	2,7545		1,13.1024	8,26.1024	1,92.1023	5,08.1023	5,62.1022	8,57·10 ²³
188Os	13.240	0	2,1766		5,43.1033	$4,99 \cdot 10^{32}$	$1,40.10^{32}$	$2,17 \cdot 10^{31}$	$3,55 \cdot 10^{30}$	$2,12 \cdot 10^{33}$
192Pt	0.782	0	2,4504		$4,13 \cdot 10^{30}$	3,83·10 ²⁹	$1,17 \cdot 10^{29}$	$2,27 \cdot 10^{28}$	$4,74 \cdot 10^{27}$	1,32.1030

Nuclei with large differences between experimental and theoretical $(T_{1/2}, sec)$

Isotope	Q, MeV	<i>l</i> _a	T _{1/2} Exp	T _{1/2} UMADAC	T _{1/2} Emp Rel Total	T _{1/2} Royer	T _{1/2} Dasgupta- Schubert	T _{1/2} Möller	T _{1/2} Medeiros
113I	2,7212	0	1,99·10 ⁹	9,85·10 ⁶	1,06.107	1,53·10 ⁷	$2,61 \cdot 10^{6}$	2,35·10 ⁴	2,00.107
149Gd	3,1234	0	1,89·10 ¹³	3,43.1011	$2,15 \cdot 10^{11}$	5,48·10 ¹⁰	9,86·10 ¹⁰	3,73·10 ⁹	1,46.1011
159Ta	5,7099	5	1,30	$3,87 \cdot 10^2$	9,06·10 ¹	1,73	0,70	0,20	1,69
176Ir	5,2653	0	3,95·10 ²	$2,42 \cdot 10^4$	$2,35 \cdot 10^4$	1,03.104	6,85·10 ⁴	$4,82 \cdot 10^{3}$	$1,07.10^{4}$
185Pt	4,4769	5	8,51.107	7,73.1011	1,16·10 ¹³	$7,58.10^{8}$	2,25.109	$4,12.10^{8}$	$1,07.10^9$
181Hg	6,3172	2	2,00·10 ³	$1,11.10^{1}$	3,30·10 ¹	4,93	$1,58.10^{1}$	3,02	4,52
202Pb	2,6299	0	$1,66 \cdot 10^{14}$	$2,14 \cdot 10^{31}$	8,59·10 ²⁹	$2,50.10^{29}$	$4,15 \cdot 10^{28}$	$1,91 \cdot 10^{28}$	$2,84 \cdot 10^{30}$
206At	5,9244	0	$2,29 \cdot 10^{7}$	$1,15 \cdot 10^5$	$1,04 \cdot 10^5$	3,16·10 ⁴	1,31·10 ⁵	$3,51 \cdot 10^4$	$2,08.10^4$
223Ra	6,0172	2	9,88·10 ⁷	8,57·10 ⁵	$2,79 \cdot 10^{6}$	1,31·10 ⁵	5,79·10 ⁵	$3,17 \cdot 10^{5}$	$1,15 \cdot 10^5$
210Ac	7,6471	6	0,35	2,04	12,80	0,17	0,20	0,40	0,16
220Ac	8,3872	2	0,88	1,28.10-3	5,32·10 ⁻³	3,70.10-4	2,59.10-4	$2,14 \cdot 10^{-3}$	5,97.10-4
229Th	5,2073	2	4,63·10 ¹⁴	1,02.1011	1,58·10 ¹²	$2,36 \cdot 10^{10}$	$1,08 \cdot 10^{11}$	$5,77 \cdot 10^{10}$	$2,39 \cdot 10^{10}$
218Pa	9,8554	0	$1,74 \cdot 10^{-4}$	2,19.10-6	1,56·10 ⁻⁶	2,38.10-7	8,40.10-8	1,80.10-6	5,99.10-7
222Pa	8,8955	0	1,07.10-2	2,07.10-4	$4,44 \cdot 10^{-4}$	7,40.10-5	4,09.10-5	4,42.10-4	1,18.10-4
224Pa	7,7334	2	3,16·10 ²	1,64	5,49	0,37	0,40	1,30	0,33
231U	5,6170	2	$1,29.10^{2}$	3,62·10 ⁹	$5,92 \cdot 10^{10}$	$1,17.10^{9}$	5,72·10 ⁹	$2,90.10^9$	9,84·10 ⁸
235Am	6,6482	1	$1,49 \cdot 10^5$	1,23.107	3,03.107	$2,08 \cdot 10^5$	3,25·10 ⁵	3,73·10 ⁵	$1,73 \cdot 10^5$
243Bk	6,9187	2	$7,04 \cdot 10^{7}$	$1,25 \cdot 10^5$	8,29·10 ⁵	8,41·10 ⁴	$1,45 \cdot 10^5$	$1,94 \cdot 10^5$	6,79·10 ⁴
244Bk	6,8236	2	$5,22 \cdot 10^{8}$	$2,67 \cdot 10^5$	$1,04 \cdot 10^{7}$	$5,84 \cdot 10^5$	$1,43 \cdot 10^{6}$	$1,08.10^{6}$	$1,69.10^5$
255Fm	7,2858	4	1,03.108	$2,83 \cdot 10^5$	$3,84.10^{6}$	5,23·10 ⁴	3,39·10 ⁵	2,19·10 ⁵	$2,66 \cdot 10^4$
256Md	7,9524	4	5,13·10 ⁶	$1,44\cdot10^{3}$	$2,78 \cdot 10^4$	$5,74 \cdot 10^2$	$6,20.10^{2}$	$1,88.10^{3}$	$1,90.10^{2}$
258Md	7,3185	1	$4,45\cdot10^{10}$	1,93.107	9,19·10 ⁶	1,93·10 ⁵	3,33·10 ⁵	$4,67.10^{5}$	4,72.104

SuperHeavy Elements

Neutron number

<u>2nd Exp. in May 2000:</u>

- $E^* = 10 \text{ MeV}$ and 12 MeV
- 1 event

Висновки

- UMADAC is established.
- Знайдено емпіричні співвідношення для періодів напіврозпаду альфа-розпаду, пов'язаних з переходами від GS до GS.
- Визначено потенціал альфа-ядра для енергій підбар'єрних і навколобар'єрних зіткнень.
- Дуже важливо враховувати як спини, так і паритети станів, між якими відбуваються альфа-переходи.
- Поверхнева деформація дочірніх ядер сильно посилюється як перетином захоплення при енергії суббар'єру, так і шириною альфа-розпаду.

Дякую за увагу!!!