Емісія протонів Емісія двох протонів Емісія кластерів

В. Ю. Денисов

Київський Національний Університет ім. Тараса Шевченко Інститут ядерних досліджень, Київ, Україна

- 1. Вступ
- 2. Емісія протонів
- 3. Емісія двох протонів
- 4. Емісія кластерів
- 5. Висновки

1. Вступ

Маса ядра $M_{Nucl}c^2$ менше маси всіх протонів та всіх нейтронів, що складають ядро, тобто

$$M_{\rm Nucl}c^2 < Z \cdot m_P c^2 + N \cdot m_N c^2.$$

The difference of these masses is binding energy of nucleus

$$E(Z,N) = Z \cdot m_P c^2 + N \cdot m_N c^2 - M_{\text{Nucl}} c^2.$$

2. Емісія протонів

Енергетичні умови

$$E(Z, N) - E(Z - 1, N) > 0,$$

Взаємодія між протоном і ядром

$$V_{\text{tot}}(r) = V_{\text{nucl}}(r, R_0, d) + V_{\text{LS}}(r, R_0, d, J, L) + V_{\text{Coulomb}}(r) + V_{\text{rot}}(r)$$

де ядерна частина взаємодії параметризована потенціалом Вудса-Саксона

$$V(r, R_0, d) = \frac{V_0}{1 + \exp((r - R_0)/d)},$$

спін-орбітальна частина взаємодії описується похідної потенціалу Вудса-Саксона

$$V_{\rm LS}(r, R_0, d, J, L) = \frac{\kappa}{r} \frac{d}{dr} \frac{V_0}{1 + \exp((r - R_0)/d)} (\vec{L}\vec{S})$$

= $\frac{\kappa}{2r} \frac{d}{dr} \frac{V_0}{1 + \exp((r - R_0)/d)} (\vec{J}^2 - \vec{L}^2 - \vec{S}^2)$
= $\frac{\kappa}{2r} \frac{d}{dr} \frac{V_0}{1 + \exp((r - R_0)/d)} \begin{cases} L, & \text{if } J = L + 1/2, \\ -(L+1), & \text{if } J = L - 1/2. \end{cases}$

Кулонівська взаємодія є

$$V_{\text{Coulomb}}(r) = \begin{cases} \frac{(Z-1)e^2}{r}, & \text{if } r \ge R_C, \\ \frac{(Z-1)e^2}{R_C} \left[\frac{3}{2} - \frac{1}{2}\left(\frac{r}{R_C}\right)^2\right], & \text{if } r < R_C, \end{cases}$$

Відценторова взаємодія є

$$V_{\rm rot}(r) = \frac{\hbar^2 L(L+1)}{2M_N r^2}.$$

Параметризація Чепурнова (1965) є найкращою для рівнів одночастинок поблизу енергії Фермі: $R_0 = 1.24 A^{1/3}$ fm, d = 0.63 fm, $V_0 = -53.3(1 + 0.63(A - 2Z)/A)$ MeV, $\kappa = 0.263(1 + 2(A - 2Z)/A)$ fm².

$$V(r, R_0, d) = \frac{V_0}{1 + \exp\left((r - R_0)/d\right)},$$

спін-орбітальна частина взаємодії описується похідною потенціалу Вудса-Саксона

$$V_{\rm LS}(r, R_0, d, J, L) = \frac{\kappa}{2r} \frac{d}{dr} \frac{V_0}{1 + \exp\left((r - R_0)/d\right)} \begin{cases} L, & \text{if } J = L + 1/2, \\ -(L+1), & \text{if } J = L - 1/2, \end{cases}$$

Період напіврозпаду емісії протонів отримують як

$$T_{1/2} = \frac{\hbar \ln 2}{\Gamma},$$

where Γ is the width

$$\Gamma = \frac{\hbar}{\tau} T(E),$$

Here

$$\tau = 2 \int_{c}^{a} \frac{dr}{v(r)} = 2M \int_{c}^{a} \frac{dr}{\sqrt{2M(E - V_{\text{nucl}}(r, R_{0}, d) - V_{\text{LS}}(r, R_{0}, d, J, L) - V_{\text{Coulomb}}(r) - V_{\text{rot}}(r))}},$$

- частота зіткнення протона з бар'єром, v(r) - швидкість, і

$$T(E) = 1/\{1 + \exp[\mathcal{A}(E)]\},\$$

- коефіцієнт передачі,

$$\mathcal{A}(E) = \frac{2}{\hbar} \int_{a}^{b} \sqrt{2M(V_{\text{nucl}}(r, R_{0}, d) + V_{\text{LS}}(r, R_{0}, d, J, L) + V_{\text{Coulomb}}(r) + V_{\text{rot}}(r)) - E)} dr,$$

це дія, а с, а і в є точці повороту.

Сферичні випромінювачі протонів

Явище протонної радіоактивністі відкрито у GSI-Darmstadt S. Hofmann, W. Reisdorf, G. Münzenberg, F.P. Hessberger, J.R.H. Schneider, and P. Armbruster, у ядрі 151Lu, Z. Phys. A305, 111-123, 1982

Nucleus	$Q_{\rm P}$ keV	Orbit	$T_{1/2}^{exp}$	$T_{1/2}^{Th}$
$^{109}_{53}\text{I}_{56}$	829±4	$1d_{5/2}$	$(100 \pm 5) \ \mu s$	$12 \ \mu s$
$^{146}_{69}{ m Tm}_{78}$	1140 ± 5	$0h_{11/2}$	$(235 \pm 27) \text{ ms}$	530 μs
$^{146}_{69}{ m Tm}_{78}$	1210 ± 5	$0h_{11/2}$	$(72 \pm 23) \text{ ms}$	$81 \ \mu s$
$^{185}_{83}{ m Bi}_{98}$	1611 ± 9	$2s_{1/2}?$	$(44 \pm 16) \ \mu s$	$3.1 \ \mu s$
$^{185}_{83}{ m Bi}_{98}$	1611 ± 9	$0h_{9/2}?$	$(44 \pm 16) \ \mu s$	23 ms

Деформовані випромінювачі протонів

Хвильову функцію одиничної частинки у зв'язаному або квазізв'язаному стані, що характеризується певними значеннями парності *p* та проекцією сумарного кутового моменту одиничної частки на вісь симетрії *Omega*, можна розкласти на суму часткові хвилі

$$\psi^{\Omega\pi}(\vec{r}) = \psi^{\Omega\pi}(r,\theta,\phi) = \sum_{L,J} \frac{u_{LJ}^{\Omega\pi}(r)}{r} [Y_L(\theta,\phi)\xi_{1/2}]_{J\Omega}.$$

де радіально-хвильові функції задовольняють систему пов'язані рівняння Шредінгера

$$\left[\frac{d^2}{dr^2} - \frac{L_{\alpha}(L_{\alpha}+1)}{r^2} - k^2\right] u_{\alpha}^{\Omega\pi}(r) = \sum_{\alpha'} v_{\alpha\alpha'}^{\Omega\pi} u_{\alpha'}^{\Omega\pi}(r).$$

Nucleus	Orbit	¹⁷¹ Au	¹⁶⁷ Ir	¹⁶⁷ Ir	¹⁶⁶ Ir	¹⁶⁶ Ir	165 Ir
$Q_{\rm p}~({\rm keV})$		1692 ± 6	1064 ± 6	1238 ± 7	1145 ± 8	1316 ± 8	1707 ± 7
$T_{1/2}^{tot\;exp}$ (ms)		1.02 ± 10	35.2 ± 20	30.0 ± 6	10.5 ± 22	15.1 ± 9	0.30 ± 6
$T_{1/2,p}^{exp}$ (ms)		2.22 ± 29	110 ± 15	7500 ± 1900	152 ± 71	860 ± 290	0.35 ± 7
$T^{theor}_{1/2,p}$	$s_{1/2}$	38 ns	$28.4 \mathrm{ms}$	$162 \mathrm{\ ms}$	$2.3 \mathrm{ms}$	$23 \mathrm{ms}$	9.7 ns
$T^{theor}_{1/2,p}$	$d_{3/2}$	280 ns	$230 \mathrm{ms}$	$1.3 \mathrm{ms}$	$18.2 \mathrm{ms}$	$182 \mathrm{ms}$	75ns
$T^{theor}_{1/2,p}$	$h_{11/2}$	$415 \mathrm{ms}$	471 s	$2.47 \ {\rm s}$	$37 \mathrm{s}$	$341 \mathrm{ms}$	$123 \mathrm{ms}$

3. Емісія двох протонів

Гольданський В. І. передбачив, що у нейтроннодефіцитних ізотопах легких ядер можлив феномен протонної та двопротонної радіоактивності // Nucl. Phys. 1960. V. 19. Р. 482Д495.

Енергетичні умови для випромінювання двох протонів

$$E(Z, N) - E(Z - 2, N) > 0,$$

де E(Z,N) - це енергія зв'язку ядра з Z протонами і N нейтронами. Енергія зв'язку ядра становить

$$E(Z,N) = Z \cdot m_P c^2 + N \cdot m_N c^2 - M_{\text{Nucl}} c^2.$$

Емісія двох протонів відкрита у 45 Fe

Pfützner M. et al. First Evidence for the Two-Proton Decay of 45Fe // Eur. Phys. J. A. 2002. V. 14. P. 279.

Giovinazzo J. et al. Two-Proton Radioactivity of 45 Fe // Phys. Rev. Lett. 2002. V. 89. P. 102501.

Послідовний A->(A-1)+p->(A-2)+p+pта

демократичний (одночасний) A - > (A - 2) + p + p [Kurchatov Institute, Moscow] моди розпаду.

Відметимо, що р+р є незв'язана система!

Експеримент може дати взаємну залежність між послідовним та демократичним режима розпаду.

Спостерігається розпад 2-протонів.

Приклад зареєстрованого двопротоного розпаду 45Fe.

An image recorded by the the Optical Time Projection Chamber in a 25 ms exposure. A track of a 45Fe ion entering the chamber from left is seen. The two bright, short tracks are protons of approximately 0.6 MeV, emitted 535 μ s after the implantation. K. Miernik, et. al., PRL 99, 192501 (2007).

3. Емісія кластерів

Енергетичні умови випромінювання кластера з Z_c протонами і N_c нейтронами

$$Q_{Z_c,N_c} = E(Z,N) - E(Z_c,N_c) - E(Z - Z_c,N - N_c) > 0,$$

де E(Z,N) це енергія зв'язку ядра з Z протонами і N нейтронами. .

14C

Емісія кластерів була передбачена Sandulescu, A., Poenaru, D. N. and Greiner W.. "New type of decay of heavy nuclei intermediate between fission and alpha-decay". Sov. J. Part. Nucl. 11, 528 (1980).

Емісія кластерів була відкрита у (²²³Ra=¹⁴C+²⁰⁹Pb):

H.J. Rose and G.A. Jones, Nature, 307, 245 (1984); D. V. Aleksandrov, A. F. Belyatski, Y.A. Glukhov, E. Y. Nikolski, B. G. Novatski, A. A. Ogloblin, D. N. Stepanov, JETP Lett.40, 909 (1984);

Основна область 20 випромінювачів, експериментально спостерігалася до 2010 р., Перевищує Z = 86:

221Fr, 221-224, 226Ra, 223, 225Ac, 228, 230Th, 231Pa, 230, 232-236U, 236, 238Pu, and 242Cm.

Тільки верхні межі можна було виявити в наступних випадках: 12C розпад 114Ba, 15N розпад 223Ac, 18O розпад 226Th, 24,26Ne розпад 232Th i 236U, 28Mg розпад 232 233 235U, 30Mg розпад 237Np i 34Si розпад 240Pu та 241Am.

Моди розпаду ядер з емісіею кластерів 14C, 20O, 23F, 22,24-26Ne, 28,30Mg, 32,34Si були підтверджені експериментально. Видно сильний ефект оболонки: як правило, найкоротше значення періоду напіввиведення отримується, коли дочірнє ядро має магічне число нейтронів ($N_{rm} = 126$) та / або протони ($Z_{rm} = 82$).

Isotope	Emitted particle	Branching ratio with respect to α -decay	$\log T(s)$	Q (MeV)
114Ba	12C	$< 3.4 \times 10-5$	> 4.10	18.985
221Fr	14C	$8.14 \times 10-13$	14.52	31.290
221Ra	14C	$1.15 \times 10-12$	13.39	32.394
222Ra	14C	$3.7 \times 10-10$	11.01	33.049
223Ra	14C	$8.9 \times 10-10$	15.04	31.829
224Ra	14C	$4.3 \times 10-11$	15.86	30.535
223Ac	14C	$3.2 \times 10-11$	12.96	33.064
225Ac	14C	$4.5 \times 10-12$	17.28	30.476
226Ra	14C	$3.2 \times 10-11$	21.19	28.196
228Th	200	$1.13 \times 10-13$	20.72	44.723
230Th	24Ne	$5.6 \times 10-13$	24.61	57.758
231Pa	23F	$9.97 \times 10-15$	26.02	51.844
	24Ne	$1.34 \times 10-11$	22.88	60.408
232U	24Ne	$9.16 \times 10-12$	20.40	62.309
	28Mg	$< 1.18 \times 10-13$	> 22.26	74.318

Isotope	Emitted particle	Branching ratio with respect to α -decay	$\log T(s)$	Q (MeV)
223U	24Ne	$7.2 \times 10-13$	24.84	60.484
	28Mg	$< 1.3 \times 10-15$	> 27.59	74.224
234U	28Mg	$1.38 \times 10-13$	25.14	74.108
	24Ne	$9.9 \times 10-14$	25.88	58.825
235U	$25 \mathrm{Ne}$	$8.06 \times 10-12$	27.42	57.361
	28Mg	$< 1.8 \times 10-12$	> 28.09	72.162
236U	24Ne	$< 9.2 \times 10-12$	> 25.90	55.944
	28Mg	$2 \times 10-13$	27.58	70.560
236Pu	28Mg	$2.7 \times 10-14$	21.52	79.668
237Np	30Mg	$< 1.8 \times 10-14$	> 27.57	74.814
238Pu	32Si	$1.38 \times 10-16$	25.27	91.188
	28Mg	$5.62 \times 10-17$	25.70	75.910
240Pu	34Si	< 6 × 10-15	> 25.52	91.026
241Am	34Si	$< 7.4 \times 10-16$	> 25.26	93.923
242Cm	34Si	1 × 10-16	23.15	96.508

Взаємодія між кластером і дочірнім ядром

Коефіціет проникнення

$$T(E) = 1/\{1 + \exp\left[\frac{2}{\hbar}\int_{a}^{b}\sqrt{2M(V_{\text{nucl}}(R) + V_{\text{Coulomb}}(R) - Q)}dR)\right]\}$$

Розпад кластера повинен мати розумну ймовірність розпаду для виявлення. Це означає, що Q повинен максимально наближатися до бар'єру.

Теоретичне наближення: Кластерний розпад як дуже асиметричний режим поділу ядер

Еволюція форми батьківського ядра розглядається як

 $E_{deformation}(elongation, asymmetry) = Surface(elongation, asymmetry) + Coulomb(elongation) + Coulomb(elon$

G. Royer, R. K. Gupta, V. Yu. Denisov,

Cluster radioactivity and very asymmetric fission through quasi-molecular shapes Nucl. Phys. 1998, v. A632 p. 275–284.

Emitter and cluster	Theoretical T _{1/2} : macroscopic LDM barrier tunneling	Theoretical T _{1/2} : macroscopic and microscopic barrier tunneling	Experimental T _{1/2}
222 Ra $\rightarrow {}^{14}C + {}^{208}Pb$	2.7×10^{33}	2.0×10^{11}	1.2×10^{11}
223 Ra $\rightarrow {}^{14}C + {}^{209}Pb$	1.6×10^{34}	1.2×10^{14}	2.0×10^{15}
224 Ra $\rightarrow {}^{14}$ C + 210 Pb	1.1×10^{35}	1.9×10^{17}	7.4×10^{15}
226 Ra $\rightarrow {}^{14}$ C + 212 Pb	4.3×10^{35}	6.8×10^{22}	1.8×10^{21}
$^{228}\text{Th} \rightarrow ^{20}\text{O} + ^{208}\text{Pb}$	1.3×10^{26}	4.3×10^{22}	7.5×10^{20}
230 Th $\rightarrow {}^{24}$ Ne + 206 Hg	1.1×10^{26}	3.7×10^{26}	4.4×10^{24}
231 Pa $\rightarrow ^{24}$ Ne + 207 Tl	2.9×10^{24}	1.2×10^{23}	1.7×10^{23}
$^{232}U \rightarrow {}^{24}Ne + {}^{208}Pb$	9.6×10^{22}	1.3×10^{21}	2.5×10^{20}
$^{233}U \rightarrow {}^{24}Ne + {}^{209}Pb$	$3.3 imes 10^{23}$	4.7×10^{24}	6.8×10^{24}
$^{234}U \rightarrow ^{24}Ne + ^{210}Pb$	1.2×10^{24}	9.4×10^{27}	1.6×10^{25}
$^{234}U \rightarrow ^{28}Mg + ^{206}Hg$	7.6×10^{24}	1.4×10^{27}	3.5×10^{25}
$^{235}U \rightarrow ^{28}Mg + ^{207}Hg$	5.1×10^{25}	4.6×10^{30}	2.8×10^{28}
236 Pu $\rightarrow ^{28}$ Mg + 208 Pb	2.0×10^{21}	1.7×10^{21}	4.7×10^{21}
238Pu → 28Mg + 210Pb	6.2×10^{22}	8.0×10^{27}	5.0×10^{25}
238 Pu $\rightarrow ^{32}$ Si + 206 Hg	1.3×10^{25}	8.4×10^{27}	1.9×10^{25}

Теоретичне наближення: Кластерний розпад як альфа-розпад R. Blendowske, H. Walliser, PRL 61, 1930 (1988).

$$\lambda_{\rm G} = \frac{v}{2R_i} P, \quad P = \exp\left[-2\int_{R_i}^{R_o} dR \{(2M/h^2)[U(R) - Q]\}^{1/2}\right], \tag{3}$$

where R_i and R_o are the inner and outer turning points, M is the reduced mass, and Q is the tunneling energy⁵ of the emitted cluster. For the prefactor $v/2R_i$, a kinetic energy $\frac{1}{2}Mv^2 = 25a$ MeV is assumed inside the barrier. The potential used is a semiempirical heavy-ion potential

 $U(R) = -(50 \text{ MeV}/1 \text{ fm})[R_a R_A/(R_a + R_A)] \exp[-(R - R_a - R_A)/d] + zZe^2/R,$

 $R_x = (1.233x^{1/3} - 0.978x^{-1/3}) \text{ fm} (x = a, A), d = 0.63 \text{ fm},$

(4)

Дякую за увагу!

•