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ONE-DIMENSIONAL MODEL OF SUBBARRIER HEAVY-ION FUSION

The total fusion cross section σfus(E) :

σfus(E) =
∞
∑

ℓ=0

σfus(E, ℓ).

The partial-wave cross sections σfus(E, ℓ)

σfus(E, ℓ) =
π2~2

2MNA12E
(2ℓ + 1)Tℓ(E).

The transmission coefficient at the collision energy E ≤ Ubar

Tℓ(E) = [1 + exp(2Aℓ(E)/~)]
−1.

Here Ubar is the height of effective potential between ions.

The action Aℓ(E) in WKB approximation:

Aℓ(E) =

∫

T

dD[2(Uℓ(D)− E)MDD]
1/2,

where T is the fusion trajectory, Uℓ(D) is the effective potential, MDD = MNA12 = MN
A1A2

A1+A2
is the mass

parameter, D is the distance between the centers of masses of colliding nuclei.

The effective potential:

Uℓ(D) =
Z1Z2e

2

D
+ Vn−n(D) +

~
2ℓ(ℓ + 1)

MNA12D2
.
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CONCLUSIONS: The one-dimensional model is strongly underestimated the cross section of subbarrier heavy-

ion fusion.



Barrier penetration

Enhancement of barrier penetration due to coupling with the low-energy 2+ and 3− vibrational states

The system of coupled channel equations
[

− ~
2

2µi

d2

dr2
+

~
2ℓi(ℓi + 1)

2µir2
+ V (r)−Qi − E

]

ϕi(r) = −
∑

j

Vij(r)ϕj(r),

where ψi(r) = ϕi(r)/r is the wave function.

The coupling potential between the ground state and the channels connected with the low-energy surface

vibrational state of multipolarity λ

V0i =
βiRi√
4π

[

dVi−i(r)

dr
+

3

2λ + 1

z1z2e
2Rλ−1

i

rλ+1

]

.

Approximate solution: diagonalization at barrier. We diagonalize the system of coupled channel equations

with the help of the substitution ϕi(r) =
∑

k Uikξk(r)

The coupling matrix Mij takes the form
∑

ij

UkiMijUjl =
∑

ij

Uki[−Qiδij + Vij(R)]Ujl = ǫkδkl.

We find the eigenvalue ǫk by a diagonalization.

Transmission coefficient T (E, ℓ, A, Z) is equal to

T (E, ℓ, A, Z) =
∑

k

|Uk0|2T (E,Vℓk),

Vℓk(r) = Vℓ(r) + ǫk = V (r) + ~
2ℓ(ℓ + 1)/(2µr2) + ǫk.



ECM

Vint(R, , )

R

R

Vint(R, , )=VNucl(R, , )+VCoul(R, , )
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1-dim ⇒ R = R0

2+ ⇒ R = R0(1 + β2Y20(θ)), Y20(θ) =
√

5
16π

(3 cos2 θ − 1);

2+&3− ⇒ R = R0(1 + β2Y20(θ) + β3Y30(θ)), Y30(θ) =
√

7
16π(5 cos

2 θ − 3) cos θ;



Enhancement of barrier penetration due to transfer of neutrons

DWBA approach.

If E < Vbarrier, V
tr
barrier, transfer - at the distance rtr,

T (E,V i
ℓk,Vf

ℓk) = 1/{1 + exp[A(E,V i
ℓk,Vf

ℓk, rtr)]},

A(E,V i
ℓk,Vf

ℓk, rtr) = Ai(E,V i
ℓk, rtr) +Atr(E, rtr) +Af(E,Vf

ℓk, rtr).

The action related to the tunneling of nuclei in an effective potential before nucleons transfer

Ai(E,V i
ℓk, rtr) = (2/~)

∫ riℓk

rtr

√

2µi(r)(V i
ℓk(r)− E)dr,

the action related to the tunneling of nuclei in an effective potential after nucleons transfer

Af(E,Vf
ℓk, rtr) = (2/~)

∫ rtr

r
f
ℓk

√

2µf(r)(Vf
ℓk(r)− E)dr,

an effective potential

Vf
ℓk(r) = V f

ℓ (r) + ǫk −Qf
transfer.

The action related to transfer of m-neutrons

Atr(E, rtr) = (2/~)
m
∑

i=1

√

2MEi(rtr − R12 − δ).

The tunneling of m neutrons between spherical square potential wells of the colliding ions. δ - simulate finite

diffuseness of the realistic nucleon-nucleus potential
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The expression for the transmission coefficient is valid for collision energies E smaller than the effective barriers

V i
ℓk, before and Vf

ℓk, after the few-nucleon transfer.

In the case Vf
ℓk < E < V i

ℓk and rtr > R
f
ℓk the transmission coefficient has the form

T (E,V i
ℓk,Vf

ℓk) =1/{1 + exp[Ai(E,V i
ℓk, rtr) +Atr(E, rtr)]} THW(E,Vf

ℓk).

Here R
f
ℓk is the barrier distance of the effective potential Vf

ℓk, THW(E,Vf
ℓk) is the transmission coefficient of the

effective barrier after transfer obtained in the Hill-Wheeler approximation and taking into account the reflection

during barrier penetration. (The Hill-Wheeler approximation is approximation for subbarrier tunneling through

the ”inverse oscillator” barrier or reflection from the ”inverse oscillator” barrier at high energies.)

The subbarrier tunneling of ions before the nucleon transfer and the subbarrier nucleon transfer are described

by the first factor.

The second factor is related to the transmission above the barrier between the ions after nucleon transfer.

If Vf
ℓk < E < V i

ℓk and rtr < R
f
ℓk, then we should take into account the decay of the system after the

few-nucleon transfer. In this case the transmission coefficient may be written as

T (E,V i
ℓk,Vf

ℓk) = 1/{1 + exp[Ai(E,V i
ℓk, rtr) +Atr(E, rtr)]}(1− THW(E,Vf

ℓk)).

We use the transmission coefficient in the Hill-Wheeler approximation at the high collision energy E > Vf
ℓk and

E > V i
ℓk and do not employ the enhancement of fusion due to nucleon transfer. Our expressions are written for

the case Qtransfer > 0 and may easily be transformed to the case Qtransfer < 0.



The compound nucleus is formed in any transfer channel. Therefore the total cross section is the sum of (5)

and of all possible transfer channels f .
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The compound nucleus is formed in any transfer channel and/or vibrational. Therefore the total cross section

is the sum of and of all possible vibrational k and transfer f channels , i.e.

σ(E) =
π~2

2µE

∑

ℓ

(2ℓ + 1)
∑

k

|Uk0|2[T (E,V i
ℓk) +

∑

f

T (E,V i
ℓk,Vf

ℓk)].

Note that the contributions of the channels with Qtransfer ≈ 0 to the total cross section are small and negligible

for Qtransfer << 1 MeV due to the exponential dependence of the transmission coefficient in the actions.
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The interaction potential between two ions at distance r,

V (r) = z1z2e
2/r + Vi−i(r).

We choose the Krappe-Nix-Sierk VKNS(r) potential in our calculation for r ≥ R12 = R1 + R2. The potential

VKNS(r) and the Coulomb energy depend on the shape of the ions at r < R12. We would like to avoid a shape

dependence of the potential V (r). Hence we use a parameterization of the interaction potential V (r) for r < R12

in the form

Vfus(r) = −Qfus + x2(c1 + c2f(x)),

where Qfus is the Q-value of the fusion reaction obtained by using the mass table or by using the mass formula,

x = (r − Rfus)/(R12 − Rfus), Rfus is the distance between the centers of mass of the left and right parts of

the spherical compound nuclei. The coefficients c1 and c2 are obtained by matching at the touching point

R12 = R1 +R2 for the potentials V (r) and Vfus(r) and for its derivatives.

The reduced mass µ for r > R12 is determined by using a standard expression. The reduced mass for r < R12

is a function of r. We used the parameterization of µ(r) introduced in

µi(f)(r) = µi(f){(17/15) k[(R12 − r)/(R12 − Rfus)]
2 exp[−(32/17) (r/Rfus − 1)] + 1},

where k = 16.
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Fusion deformed nuclei in the ground state

2(
144Sm)=0; 2(

148Sm)=0,14; 2(
154Sm)=0,34



Various orientations of deformed nuclei occur during collisions, therefore the fusion reaction cross section

induced by two deformed nuclei should be averaged over all possible orientations of colliding nuclei

σ(E) =
π~2

2µE

∑

ℓ

(2ℓ + 1)
1

8π

∫ π

0

sin(Θ1)dΘ1

∫ π

0

sin(Θ2)dΘ2

∫ 2π

0

dΦ T (E, ℓ,Θ1,Θ2,Φ).

Here µ is the reduced mass of colliding nuclei, E is the collision energy, T (E, ℓ,Θ1,Θ2,Φ) is the transmission

coefficient evaluated at orientation of colliding nuclei specified by angles Θ1, Θ2 and Φ:

 

Θ1 
Θ2 Φ 



We use the WKB approximation for evaluation of the transmission coefficient for sub-barrier energies

T (E, ℓ,Θ1,Θ2,Φ) =

{

1 + exp

[

2

~

∫ b(E,ℓ,Θ1,Θ2,Φ)

a(E,ℓ,Θ1,Θ2,Φ)

√

2µ[V (R, ℓ,Θ1,Θ2,Φ)− E] dR

]}−1

and the Hill-Wheeler approach [?] for over-barrier collision energies. The inner a(E, ℓ,Θ1,Θ2,Φ) and outer

b(E, ℓ,Θ1,Θ2,Φ) turning points in Eq. (2) are determined from corresponding equations

V (a(E, ℓ,Θ1,Θ2,Φ), ℓ,Θ1,Θ2,Φ) = E,

V (b(E, ℓ,Θ1,Θ2,Φ), ℓ,Θ1,Θ2,Φ) = E.

The interaction potential V (R, ℓ,Θ1,Θ2,Φ) of two deformed nuclei at distance R between mass centers

and mutual orientation described by angles Θ1, Θ2 and Φ consists of Coulomb VC(R,Θ1,Θ2,Φ), nuclear

VN(R,Θ1,Θ2,Φ) and rotational Vℓ(R) = ~
2ℓ(ℓ + 1)/(2µR2) parts

V (R, ℓ,Θ1,Θ2,Φ) = VC(R,Θ1,Θ2,Φ) + VN(R,Θ1,Θ2,Φ) + Vℓ(R).



The Coulomb interaction of two deformed nuclei is approximated as [?]

VC(R,Θ1,Θ2,Φ) =
Z1Z2e

2

R
{1

+
∑

ℓ≥2

[f1ℓ(R,Θ1, R10)β1ℓ + f1ℓ(R,Θ2, R20)β2ℓ]

+f2(R,Θ1, R10)β
2
12 + f2(R,Θ2, R20)β

2
22

+f3(R,Θ1,Θ2, R10, R20)β12β22

+f4(R,Θ1,Θ2,Φ, R10, R20)β12β22} .

Applying the proximity theorem we can obtain a simple parametrization of the nuclear part of interaction

potential between two deformed nuclei

VN(R,Θ1,Θ2,Φ) ≈
1/R10 + 1/R20

[

(C
‖
1 + C

‖
2)(C

⊥
1 + C⊥

2 )
]1/2

× V sph
N (d(R,Θ1,Θ2,Φ, βi2, βiℓ)),

where C
‖
i and C

⊥
i are the main curvatures of deformed surface of nucleus i at the point closest to the surface of

another nucleus, d(R,Θ1,Θ2,Φ, βi2, βiℓ) is the closest distance between surfaces of interacting nuclei, V sph
N (d) is

the nuclear part of the interaction potential between spherical nuclei at d = R−R10−R20. The nuclear part of

potential depends strongly on the value of the closest distance between surfaces of interacting nuclei, therefore

we evaluate d(R,Θ1,Θ2,Φ, βi2, βiℓ) numerically.



24Mg+24Mg (β2(
24Mg) = 0.438)
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28Si+154Sm (β2(
28Si) = −0.407, β2(

154Sm) = 0.34)
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12C+12C (β2 = −0.40± 0.02 and β4 = 0.16± 0.03)
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48Ca+244Pu: effect of shallow capture well
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150Nd (β2 = 0.285,β4 = 0.107)+158Gd (β2 = 0.348,β4 = 0.079): effects of shallow

capture well, orientation and hexadecapole deformation
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NUCLEAR REACTIONS IN HOT STELLAR MATTER

AND NUCLEAR SURFACE DEFORMATION

Various nuclear reactions (capture, fusion, decay, disintegration, excitation, elastic and

inelastic collisions, γ-emission, γ-decay etc.) take place in the star matter during star burning,

supernova explosions and other stages of star evolution.

The cross-sections of nuclear reactions determine diverse properties of the stars, the evolu-

tion of star and the nucleosynthesis of elements in stellar matter.

The star matter mainly consists of nuclei, α-particles, nucleons, electrons and γ-quanta.

Typical temperatures T

K MeV

The Sun (center) (H burning) ≈ 1.57 · 107 ≈ 0.0015

He burning stage of massive stars ≈ 1÷ 2 · 108 ≈ 0.009÷ 0.017

C burning stage of massive stars ≈ 0.8÷ 1 · 109 ≈ 0.09

O burning stage of massive stars ≈ 2 · 109 ≈ 0.17

Si burning stage of massive stars ≈ 3.5 · 109 ≈ 0.3
There are many nuclei with energies of excited states around εi ∼ 0.3 MeV: ⇒ nuclei in star

matter exist in both the ground and excited states due to various reactions at T & 0.2 MeV.



rp-, rα-processes, fusion of heavy nuclei
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SnSbTe cycle

sets the endpoint

(Schatz et al. 2001)
p
ro

to
n
s 

(Z
)

neutrons (N)

104Sb 105Sb 106 107Sb

103Sn 104Sn 105Sn 106Sn

105Te 106Te 107Te 108Te

102In 103In 104In 105In

(!,a)

Sb

"+

(p, )!

The Sn-Sb-Te cycle

Wallace & Woosley (1981)
Schatz et al. (1998)

rp process:
41Sc+p      42Ti

       +p      43V

       +p      44Cr
44Cr          44V+e++!e
44V+p …

"p process: 
14O+"       17F+p
17F+p        18Ne
18Ne+" …

3" reaction
"+"+"      12C



Capture of charged particles on nuclei with low-energy quadrupole vibrations

The probability to find a nucleus in a state with excitation energy εi and spin ji in stellar

matter at temperature T can be estimated within the statistical approach as

P (εi, ji, kT ) =
(2ji + 1) exp(−εi/kT )

∑∞
i=0(2ji + 1) exp(−εi/kT )

.

Here k is the Boltzmann constant; i = 0 ⇒ the ground-state of the nucleus with εi = 0, i = 1

⇒ the lowest 2+ surface oscillation state with ε1 = εvib and i ≥ 2 for other excited states.

Occupation probability for the ground state, the

first 2+ surface oscillation state and the net oc-

cupation probability of high-energy states P (εi >

εvib) in
52Fe (εvib = 0.849 MeV, βvib = 0.308) and

80Sr (εvib = 0.386 MeV, βvib = 0.404) at different

temperatures of stellar matter kT .
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Therefore evaluating the reaction cross-sections between charged particle and heavy soft

nucleus in star matter we should take into account contributions from both the ground and

well-deformed excited states of the nucleus.



α-capture reactions in stars

The α-particle may be considered the most rigid nucleus, because the energy of the first

excited state is 20.21 MeV. The population of such high-energy state is negligible in stellar

matter at temperatures kT . 1 MeV.

On the other hand, many states with energies εi . 1 MeV in soft nuclei can be noticeably

populated at kT . 1 MeV. Therefore, the α-capture reaction cross-section in star matter at

temperature T can be estimated as

σ(E, kT ) =
∞
∑

i=0

P (εi, ji, kT )σi(E),

where σi(E) is the fusion cross-section between the α-particle and a nucleus in a state i with

energy εi and spin ji, E is the collision energy.

The capture (fusion) cross-section of two particles with corresponding values of spins 0 and j

is

σ(E) =
π~2

2µE(2j + 1)

∑

Jℓℓ′
(2J + 1)tJℓℓ′(E),

where µ is the reduced mass, ℓ and ℓ′ are the orbital moment of ingoing and outgoing channels,

J is the total angular momentum and tJℓℓ′(E) is the generalized transmission coefficient.



The shape of a nucleus in highly-excited states i ≥ 2 can be spherical or deformed. The kind

of surface deformation can be different for different high-energy states. The high-multipolarity

λ ≥ 3 axial or nonaxial multipole λ ≥ 2 nuclear surface deformations usually lead to the

smaller reduction of the barrier than those induced by the axial quadrupole surface deforma-

tion.

Therefore σi(E)|i≥2 ≈ σ0(E).

As a result, the α-capture reaction cross-section in star matter can be rewritten as

σ(E, kT ) ≈ [P (0, 0, kT ) +
∞
∑

i=2

P (εi, ji, kT )]σ0(E) + P (εvib, 2, kT )σ1(E).

Using the identity
∞
∑

i=0

P (εi, ji, kT ) ≡ [P (0, 0, kT ) +
∞
∑

i=2

P (εi, ji, kT )] + P (εvib, 2, kT ) ≡ 1

we get the simple form

σ(E, kT ) ≈ σ0(E) + P (εvib, 2, kT )[σ1(E)− σ0(E)] = σ0(E){1 + P (εvib, 2, kT )[s(E)− 1]}.



Here term containing P (εvib, 2, kT ) is related to the cross-section enhancement induced by

the population of the first 2+ surface oscillation state in soft nuclei in the stellar matter, and

s(E) = σ1(E)/σ0(E).

Ratio s(E) directly shows the effect of cross-section enhancement caused by deformation

of the nuclear surface in 2+ states, because if the surface deformation is neglected, then

σ1(E) = σ0(E) and s(E) = 1.



Two important effects on tJℓℓ′(E):

1. During the α-nucleus fusion reaction the α-particle can arrive from any direction, therefore

we should make averaging over space angles, if surface of the nucleus is deformed.

2. Nuclear surface in 2+ state oscillates about the spherical equilibrium shape. Therefore we

should make averaging over all possible values of the deformation parameter.

The reaction S-factor is proportional to the cross-section

S(E, kT ) = E exp(2πη(E))σ(E, kT ),

where η(E) = zZe2/(~v) is the Sommerfeld parameter, v = (2E/µ)1/2 is the collision velocity.

The enhancement of the S-factor or the reaction cross-section in stellar matter induced by

2+ surface oscillation is described by the ratio

s(E, kT ) = S(E, kT )/Ssph(E),

Ssph(E) = E exp(2πη(E))σsph(E, kT ), σsph(E, kT ) is the cross-section on spherical nucleus.

The stellar reaction cross-sections are often averaged over the Maxwell–Boltzmann distri-

bution of collision velocities v and can be presented in the form

〈σ(kT )〉 = 2

∫ ∞

0

σ(E, kT )E exp(−E/kT )dE/
[√

π

∫ ∞

0

E exp(−E/kT )dE
]

.
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Spherical ground-state and vibrational deformation of 2+ state in nuclei are taken into

account.
52Fe ⇒ εvib = 0.849 MeV, βvib = 0.308

80Sr ⇒ εvib = 0.386 MeV, βvib = 0.404
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Statical deformation of nuclei is taken into

account.

22Ne: β2 = 0.326

24Mg: β2 = 0.374
72Kr: β2 = −0.349
76Kr: β2 = 0.4

β2 from Moller, ADNDT 59, 185 (1995)0 2 4 6 8 10

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

+22Ne   +24Mg
          statical(E)/ sph(E)
          < statical(kT)>/< sph(kT)>

En
ha

nc
em

en
t

E , kT*10 (MeV)

0 2 4 6 8 10

1.00

1.05

1.10

1.15

1.20

1.25

1.30

p+72Kr    p+76Kr
         statical(E)/ sph(E)
         < statical(kT)>/< sph(kT)>

En
ha

nc
em

en
t

E , kT*10 (MeV)
0 2 4 6 8 10

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
16O+22Ne   
      statical(E)/ sph(E)
      < statical(kT)>/< sph(kT)>

En
ha

nc
em

en
t

E , kT*10 (MeV)



S–factor for fusion of two deformed nuclei
12C+12C (β2 = −0.40± 0.02 and β4 = 0.16± 0.03)
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 Patterson et al. 1969         Mazarakis and Stephens 1973
 High and Cujec 1977         Kettner et al. 1980
 Erb et al. 1980                   Becker et al. 1981
 Dasmahapatra et al. 1982  Satkowiak et al. 1982
 Aguilera et al. 2006            Barron-Palos et al. 2006
 Spillane et al. 2007



Conclusions

Subbarrier heavy-ion fusion cross-sections are enhanced by

- statical deformation of nuclei

- dynamical (vibrational) deformations of nuclei, due to cou-

pling effects

- nucleon transfer with positive transfer reaction Q-value.
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Thanks for your attention!


