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1. Introduction

Transfer reactions is

A +B = (C + c) + B → C + (c +B) = C +D.

As a rule transferred particle c is nucleon or few-nucleon cluster.

There are quasi-elastic transfer reactions, when the kinetic energies of nuclei in the incident and scattered channels

at large distances between nuclei are similar.

At high-collision energies there are multinucleon transfer reactions induced by deep-inelastic heavy-ion collisions.

The kinetic energies of nuclei the incident and scattered channels on large distances are very different.



2. Direct transfer reactions

Lets H = H(R, {r}) is the total hamiltonian of system of complex colliding nuclei and Ψ(R, {r}) is the total

wave-function, which can be expanded as the sum on the eigen states of each nuclei (open channels, i.e. related to P

projection)

Ψ(R, r) =
∑

n

ψn(R)ϕn({r}).

where ψn(R) is the wave-function described the relative motion of two nuclei at channel n with distance between mass

centers R, ϕn({r}) = φ1n({r1})φ2n({r2}) is the wave function of intrinsic states of corresponding nuclei φ1n({r1})

and φ2n({r2}) at channel n, and {r1} and {r2} are intrinsic coordinate.

Note that at R → ∞

Hϕn({r}) = εnϕn({r}),

where εn is eigenenergy of nuclei at channel n.

The Schrödinger equation is

(H − E)Ψ(R, r) = 0.



Transfer reaction:

A +B = (C + c) + B → C + (c +B) = C +D.

The wave-function of nucleus A: φA({r1}) = φC({r1})⊗ φc(R, {r1}),

the wave-function of nucleus B: φB({r2}),

the wave-function of nucleus D: φD({r2}) = φB({r2})⊗ φc(R, {r2}),

and which wave-function of transferred particle c: φc(R, {r1}) or φc(R, {r2}).

The total quantum numbers A,B,C,D, c are included and specified correspondingly the core eigen states with quan-

tum eigen numbers nC,B and/or eigen states of transferred particles with quantum eigen numbers nc.

Multiplying the Schrödinger equation

(H − E)Ψ(R, r) = (H − E)
∑

n

ψn(R)ϕn({r}) = 0.

on ϕ∗
n({r}) and taking the integral on intrinsic coordinates we get

∫

d{r} ϕ∗
n({r})(H(R, {r})− E)Ψ(R, r) =

∫

d{r} ϕ∗
n({r})(H(R, {r})− E)

∑

m

ψm(R)ϕm({r})

= (hnn(R)− E)ψn(R) +
∑

m, m6=n

hnm(R)ψm(R) = 0,

where

hnm(R) =

∫

d{r}ϕ∗
n({r})H(R, {r})ϕm({r}) = δnm

−~
2∆R

2µn
+ V Nucl

nm (R) + V Coul
nm (R) + iWnn(R)δnm + δnmεn,

V Nucl
nm (R) and V Coul

nm (R) are nuclear and Coulomb parts of nucleus-nucleus matrix elements, µn is the reduced mass in

channel n, and Wnn(R) is imaginary part of potential related to the coupling to the closed channels Q.



We consider spinless colliding nuclei, therefore we present ψn(R) =
∑

LM
ξnL(R)
R YLM(Ω). Multiplying this system of

equations on YLM(Ω) and taking the integral on angle Ω we have system of coupled-channel equations
[

−~
2

2µn

∂2

∂R2
+

~
2L(L + 1)

2µnR2
+ V Nucl

nn (R) + V Coul
nn (R) + iWnn(R) + εn − E

]

ξnL(R)

= −
∑

m,m6=n

[

V Nucl
nm (R) + V Coul

nm (R)
]

ξmL(R).

This is complex coupled-channels equations.

The Distorted-Wave Born Approximation (DWBA) is simplest way to consider transfer reactions.



3. DWBA, single-particle and cluster states, spectroscopic factors



Lets consider two channels and propose that the influence of final channel (f) on the incident channel (i) is small.

Than we have system of two equations
[

−~
2

2µi

∂2

∂R2
+

~
2L(L + 1)

2µiR2
+ V Nucl

ii (R) + V Coul
ii (R) + iWii(R)− E

]

ξiL(R) ≈ 0

[

−~
2

2µf

∂2

∂R2
+

~
2L(L + 1)

2µfR2
+ V Nucl

ff (R) + V Coul
ff (R) + iWnn(R) + εf − E

]

ξfL(R)

= −
[

V Nucl
fi (R) + V Coul

fi (R)
]

ξiL(R).

The application of Green function techniques leads to the formal solutions of these equations

ξfL(R) = ξ+iL(R)δif +

∫

dR′ G+
fL(R,R

′)
[

V Nucl
fi (R′) + V Coul

fi (R′)
]

ξ+iL(R
′),

where G+
fL(R,R

′) is the outgoing-wave Green function for the equation

[

−~
2

2µf

∂2

∂R2
+

~
2L(L + 1)

2µfR2
+ V Nucl

ff (R) + V Coul
ff (R) + iWnn(R) + εf − E+

]

G+
fL(R,R

′) = δ(R− R′).

The amplitude of i→ f transition is

TfiL = TiiLδif +

∫

dR′ ξ−∗
fL(R

′)
[

V Nucl
fi (R′) + V Coul

fi (R′)
]

ξ+iL(R
′),

where ξ−fL(R) is the solution of equation

[

−~
2

2µf

∂2

∂R2
+

~
2L(L + 1)

2µfR2
+ V Nucl

ff (R) + V Coul
ff (R) + iWnn(R) + εf − E+

]

ξ−fL(R) = 0

and TiiL is the elastic transition amplitude.



For different initial i and final states f the DWBA transition amplitude of i→ f transition is

TfiL =

∫

dR ξ−∗
fL(R)

[

V Nucl
fi (R) + V Coul

fi (R)
]

ξ+iL(R) =

∫

dR ξ−∗
fL(R)Ftr(R)ξ

+
iL(R)

=

∫

dR ξ−∗
fL(R)

[
∫

d{r}ϕ∗
f({r})H(R, {r})ϕi({r})

]

ξ+iL(R),

where Ftr(R
′) is the transfer form-factor. The differential cross section of transfer reaction can be written as

dσ(θ)

dΩ
=
kf
ki

µiµf
(2π~2)2

∑

L

|TfiL|
2 =

kf
ki

µiµf
(2π~2)2

∑

L

∣

∣

∣

∣

∫

dR ξ−∗
fL(R)Ftr(R)ξ

+
iL(R)

∣

∣

∣

∣

2

,

where kf =
√

2µfEf/~2, ki =
√

2µiEi/~2, µi, µf , Ei, Ef are the reduced masses and energies in incident and final

channels respectively.

In the realistic case the transfer amplitude of reaction A + B = (C + c) + B → C + (c + B) = C + D depends

on the probability of representation of nucleus A as (C + c) and nucleus D as (c + B). These probabilities are the

spectroscopic factors, which are defined as

SA,C+c =

∣

∣

∣

∣

∫

d{r1} φ
exact
A ({r1}) φC({r1})⊗ φc({r1})

∣

∣

∣

∣

2

, SD,B+c =

∣

∣

∣

∣

∫

d{r2} φ
exact
D ({r2}) φB({r2})⊗ φc(R, {r2})

∣

∣

∣

∣

2

.

Here φexactA ({r1}) and φ
exact
D ({r2} are exact wave-functions of nuclei A and D respectively. Note that SA,C+c ≤ 1,

SD,B+c ≤ 1 as a rule. The realistic differential cross section of transfer reaction can be written as

dσ(θ)

dΩ
= SA,C+cSD,B+c

kf
ki

µiµf
(2π~2)2

∑

L

|TfiL|
2 .

If SA,C+c = SD,B+c = 1 we get previous expression for the differential cross section of transfer reaction.



4. Transfer reactions around barrier. Sub-Coulomb transfer.

The simplest description of the elastic transfer for scattering processes in the vicinity of the Coulomb barrier than

would be in terms of a semiclassical model by Broglia and Winther PC19, 1 (1972) (it is easy derive from the DWBA

taking into account the same ingoing and outgoing wave), where

Ttr(θ) ≃ Telastic(θ)
√

Ptr(R),

with Ptr(θ) representing the transfer probability.

The transfer cross-section is

dσ(θ)

dΩ
≃ SA,C+cSD,B+c

dσ(θ)

dΩ

∣

∣

∣

∣

elastic

Ptr(θ) = SA,C+cSD,B+c
dσ(θ)

dΩ

∣

∣

∣

∣

Rutherford

Ptr(θ).

The simplest approximation for the transfer probability Ptr(θ) is semiclassical value for sub-barrier penetration of

transferred particle under rectangle barrier. The barrier height for the neutron with ℓ = 0 is zero, the neutron

separation energy is ε and distance of tunneling (barrier width d(θ) = D(θ) − (R1 + R2)) equals to the distance

between surfaces of colliding nuclei at the closest point. So

Ptr(θ) ≃ exp
[

−
√

2Mnε/~2D(θ)
]

sin (θ/2).

The distance of closest point between surfaces is evaluated by using classical Coulomb trajectory

D(θ) ≃
Z1Z2e

2

2Ecm

(

1 +
1

sin (θ/2)

)

.









4. Transfer reactions around barrier. Quasi-elastic transfer.
12C+13C and 12C+13N



Linear Combination of Nuclear Orbitals : Ψ = ψn,C1
(R, r)φn+C1

(r)/r + (−1)πψn,C2
(R, r)φn+C2

(r′)/r′







Comparison between DWBA, OCRC 3 and 4 channels calculations.









5. Deep-inelastic collisions (DIC). Di-nuclear system. Fast fission.



σfus(E) =
π2~2

2MNA12E

∞
∑

ℓ=0

(2ℓ + 1)Tℓ(E) =
π2~2

2MNA12E

∞
∑

ℓ=0

(2ℓ + 1)
1

1 + exp [−2π(E − Barrier)/(~ωBarrier)]
.



T.K. Ghosh et al. / Physics Letters B 627 (2005) 26 31





DIC are going though the formation of di-nuclear system.

Due to high angular momentum the colliding nuclei cannot for compound nucleus,

however nucleons exchange strongly between nucleon during di-nuclear system life-time.





De Broglie wave langth is λ = h
mv = 2π

√

~2

2µE = 2π
√

~2

2[MNA1A2/(A1+A2)]E
<< Rnucleus.

Example: 40Ar+232Th , Elab = 379 MeV, Ecm = [232/(232 + 40)]379 = 323 MeV,

λ = 2 · 3.1415 ·
√

20.748/(232 · 40/(232 + 40) · 323) = 0.27fm.

Therefore for the DIC: Trajectory of collisions can be obtained by solving newtonian classic equations of motion,

which include the friction force proportional to the velocities:

dµṘ

dt
− µrϑ̇2 +

dV

dR
+KRṘ = 0,

dµR2ϑ̇

dt
+KϑR

2ϑ̇ = 0.

Here KR(R) is the radial friction coefficient and Kϑ(R) is the tangential friction coefficient.









Contribution of reactions of various type into total reactions for 
various projectiles on Pb targets



6. Conclusion

The transfer phenomena are very common for nuclear reactions.

There are

• sub-barrier single-nucleon and few-nucleon transfer;

• quasi-elastic single-nucleon and few-nucleon transfer;

• multi-nucleon transfer at DIC.

The transfer process depends on collision energy and angular momentum.
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