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1. Introduction

2. Optical model: Formal Theory and Basic Equations

Let’s consider the Schrödinger equation described scattering of two complex nuclei

(E −H)Ψ = 0,

where H is the Hamiltonian and Ψ is the total wave-functions.

We can select open PΨ and closed QΨ components of the total wave-function by using the projection operators P

and Q, i.e.

Ψ = PΨ+QΨ.

The wave functions of open and closed channels are orthogonal to each other

〈PΨ|QΨ〉 = 0.

The projection operators must obey the equations

P +Q = 1,

P † = P,Q† = Q,

P 2 = P,Q2 = Q,

PQ = QP = 0.

By using these projection operators we rewrite the Schrödinger equation in the form

(E −H)Ψ ≡ (E −H)(PΨ +QΨ) = 0.



Operating from the left side by P and Q operators we get, respectively,

(E − PHP )PΨ = PHQΨ = (PHQ)QΨ,

(E −QHQ)QΨ = QHPΨ = (QHP )PΨ.

Here we use early pointed properties of projection operators. Formal solution of the last equation in the operator form

is

QΨ =
1

(E −QHQ + iε)
(QHP )PΨ,

where ε is infinitesimal. Using this solution we obtain a Schrödinger equation for open channels

(E −Heff)PΨ = (E −Heff)ΨP = 0,

where

Heff = (PHP ) + (PHQ)
1

(E −QHQ + iε)
(QHP ) ≡ HPP +HPQ

1

(E −HQQ + iε)
HQP .

is the effective Hamiltonian of open channels. The second term of describes the influence of coupling between open

and closed channels on the open channels.

Lets closed channels can be constricted by the discrete i and continuous states α. The corresponding wave functions

is

QΨ =
∑

i

aiψQi +
∑

α

∫

dE a(α, E)ψQα(E),



where ai and a(α, E) are the amplitudes,

HQQψQi = EQiψQi,

HQQψQα(E) = EψQα(E),

are the corresponding Schrödinger equations,

〈ψQi|ψQi′〉 = δii′,

〈ψQα(E)|ψQα′(E
′)〉 = δαα′ δ(E − E ′),

〈ψQi|ψQα(E)〉 = 0.

Then the effective Hamiltonian for Schrödinger equation of open channels is

Heff = HPP +HPQ
1

(E −HQQ + iε)
HQP

= HPP +
∑

i

HPQψQi〉〈ψQiHQP

(E − EQi + iε)
+
∑

α

∫

dE
HPQψQα(E)〉〈ψQα(E)HQP

(E − E + iε)
.

Taking into account that
∫

dE
f(E)

(E − E + iε)
= p.v.

∫

dE
f(E)

(E − E)
− iπ

∫

dE δ(E − E) f(E) = p.v.

∫

dE
f(E)

(E − E)
− iπf(E),

we find real and imaginary part of the effective Hamiltonian

Heff = HRe
eff + iHIm

eff ,



where p.v. indicates the principal value of the integral and

HRe
eff = HPP +

∑

i

HPQψQi〉〈ψQiHQP

(E − EQi + iε)
+
∑

α

p.v.

∫

dE
HPQψQα(E)〉〈ψQα(E)HQP

(E − E + iε)
,

HIm
eff = −π

∑

α

HPQψQα(E)〉〈ψQα(E)HQP .

The consequences of this expression for effective Hamiltonian:

• The effective Hamiltonian is complex.

• The effective Hamiltonian is nonlocal (or momentum dependence), because of coupling with closed channels Q

HRe
eff f(r)〉 = HPPf(r)〉 +

∑

i
HPQψQi(r)〉〈ψQi(r

′)HQP |f(r
′)〉

(E−EQi+iε)
+ +

∑

α p.v.
∫

dE
HPQψQα(E ,r)〉〈ψQα(E ,r

′)HQP |f(r
′)〉

(E−E+iε)
. Note that

HPP is local.

• The effective Hamiltonian is energy-dependent, i. e. HRe
eff is the function of E.

• The effective Hamiltonian has resonant nature, see resonances at E = EQi.

• The effective Hamiltonian depends on the particular model space. By choosing different model spaces for P and

Q operators we get different effective potential.



Lets H = H(R, {r}) is the total hamiltonian of system of complex colliding nuclei and Ψ(R, {r}) is the total

wave-function, which can be expanded as the sum on the eigenstates of each nuclei (open channels, i.e. related to P

projection)

Ψ(R, r) =
∑

n

ψn(R)ϕn({r}).

where ψn(R) is the wave-function described the relative motion of two nuclei at channel n with distance between mass

centers R, ϕn({r}) = φ1n(r1)φ2n(r2) is the wave function of intrinsic states of corresponding nuclei φ1n(r1) and φ2n(r2)

at channel n, and r1 and r2 are intrinsic coordinate.

Note that at R → ∞

Hϕn({r}) = εnϕn({r}),

where εn is eigenenergy of nuclei at channel n.

The Schrödinger equation is

(H − E)Ψ(R, r) = 0.



Multiplying the Schrödinger equation

(H − E)Ψ(R, r) = 0.

on ϕ∗
n({r}) and taking the integral on intrinsic coordinate we get

∫

d{r} ϕ∗
n({r})(H(R, {r})− E)Ψ(R, r) =

∫

d{r} ϕ∗
n({r})(H(R, {r})− E)

∑

m

ψm(R)ϕm({r})

= (hnn(R)− E)ψn(R) +
∑

m, m6=n

hnm(R)ψm(R) = 0,

where

hnm(R) =

∫

d{r}ϕ∗
n({r})H(R, {r})ϕm({r}) = δnm

−~
2∆R

2µn
+ V Nucl

nm (R) + V Coul
nm (R) + iWnn(R)δnm + δnmεn,

V Nucl
nm (R) and V Coul

nm (R) are nuclear and Coulomb part of nucleus-nucleus matrix elements, µn is the reduced mass in

channel n, and Wnn(R) is imaginary part of potential related to the coupling to the closed channels Q.

We consider spinless colliding nuclei, therefore we present ψn(R) =
∑

LM
ξnL(R)
R

YLM(Ω). Multiplying this system of

equations on YLM(Ω) and taking the integral on angle Ω we have system of coupled-channel equations
[

−~
2

2µn

∂2

∂R2
+

~
2L(L + 1)

2µnR2
+ V Nucl

nn (R) + V Coul
nn (R) + iWnn(R) + εn − E

]

ξnL(R)

= −
∑

m,m6=n

[

V Nucl
nm (R) + V Coul

nm (R)
]

ξmL(R).



Often, the Woods-Saxon parametrization

V Nucl
nn (R) = −

V 0
n

1 + exp[(R− R0)/d]
, R0 = r0

(

A
1/3
1n + A

1/3
2n

)

,

is adopted for the nuclear potential and Coulomb potential for spherical nuclei is

V Coul
nn (R) =







e2Z1nZ2n
R , if R ≥ R0C,

e2Z1nZ2n
R0C

[

3
2 −

R2

2R2
0C

]

, if R < R0C.

Note that non-diagonal terms of nuclear and Coulomb matrix elements V Nucl
nm (R) and V Coul

nm (R) depend on the

nuclear model and reaction type.

The imaginary potential usually has volume and surface parts

Wnn(R) = W vol
nn (R) +W surf

nn (R),

where

W vol
nn (R) =

W 0
n

1+exp[(R−R0W )/dW ], R0W = r0W

(

A
1/3
1n + A

1/3
2n

)

,

W surf
nn (R) = d

dR
W 0S

n

1+exp[(R−R0WS)/dWS ]
, R0WS = r0WS

(

A
1/3
1n + A

1/3
2n

)

.



The solutions of coupled-channel equations
[

−~
2

2µn

∂2

∂R2
+

~
2L(L + 1)

2µnR2
+ V Nucl

nn (R) + V Coul
nn (R) + iWnn(R) + εn − E

]

ξnL(R) =

−
∑

m,m6=n

[

V Nucl
nm (R) + V Coul

nm (R)
]

ξmL(R).

are matched the following boundary conditions

ξnL(R)|R=0 = 0,

ξnL(R)|R→∞ =
i

2

[

δnn0H
−
L (ηn0, kn0R)−

(

vn0
vn

)1/2

SnLH
+
L (ηn, knR)

]

.

Here n0 is the incident channel (note that εn0 = 0), kn =
√

2µn(E − εn)/~2, η = µnZ1nZ2ne
2/(~2kn), SnL is the

S-matrix, and H±
L (η, knR) are the Coulomb functions H±

L (η, x) = GL(η, x)± iFL(η, x) with asymptotics

FL(η, x)|x→0 = 0,

GL(η, x)|x→0 = H±
L (η, x)|x→0 = +∞,

H±
L (η, x)|x→∞ = exp

[

±i

(

x− η ln(2x)−
πL

2
+ σL

)]

,

FL(η, x)|x→∞ = sin

[

i

(

x− η ln(2x)−
πL

2
+ σL

)]

,

GL(η, x)|x→∞ = cos

[

i

(

x− η ln(2x)−
πL

2
+ σL

)]

,

exp (iσL) =

[

Γ(1 + L + iη)

Γ(1 + L− iη)

]1/2

, σL = argΓ(1 + L + iη)



3. Optical model: Elastic scattering, Numerical solutions

Lets consider for simplicity one channel and omit index n for simplicity. The system of coupled-channel equations

are reduced to single Schrodinger equation
[

−~
2

2µ

∂2

∂R2
+

~
2L(L + 1)

2µR2
+ V Nucl(R) + V Coul(R) + iW (R)− E

]

ξL(R) = 0.

The boundary condition

ξL(R)|R=0 = 0,

ξL(R)|R→∞ =
i

2

[

H−
L (η, kR)− SLH

+
L (η, kR)

]

= FL(η, kR) + CL[GL(η, kR) + iFL(η, kR)],

where CL = −i
2
(SL − 1).

The total scattering amplitude is given as the sum of Coulomb scattering amplitude fC(ϑ) related to long-range

Coulomb interaction and contribution to the amplitude induced by short-range interaction related to nuclear forced

between colliding nuclei

F (ϑ) = fC(ϑ) +
1

k

∞
∑

L=0

exp (2iσL)(2L + 1)CLPL(cosϑ),

where

fC(ϑ) = −η
exp [−iη ln [sin2(ϑ/2)] + 2iσ0]

2k sin2(ϑ/2)]

is exact Coulomb scattering amplitude.

The differential scattering cross section is

dσ(ϑ)

dϑ
= |F (ϑ)|2.



The Rutherford differential cross section (when neglecting both nuclear and imaginary potentials) is

dσR(ϑ)

dϑ
=

(

Z1Z2e
2

4E

)2
1

sin4 ϑ/2
.

Note that

• sin4 ϑ/2|ϑ=0◦ = 0, therefore limϑ=0◦
dσR(ϑ=0)

dϑ = ∞;

• the cross section does not depend on signum of the charges;

• the angular distribution cross section does not depend on the energy;

• dσR(ϑ)
dϑ

∝ 1
E2 .

Therefore, often the results of elastic scattering is presented as

dσ(ϑ)
dϑ

dσR(ϑ)
dϑ

=
|F (ϑ)|2

(

Z1Z2e2

4E

)2
1

sin4 ϑ/2

.



Elastic scattering: 12C+208Pb: W. Y. So, et al., Phys. Rev. C 77, 024609 (2008)



58Ni+16O, 60Ni+16O: L. West, K.W. Kemper, N.R. Fletcher, Phys. Rev. C 11, 859 (1975)





The radial Schr”odinger equation can be written in the form

d2

dR2
ξ(r) = A(R)ξ(R).

We introduce the auxiliary function

ζ(R) = ξ(R)−
h2

12
A(R)ξ(R),

where h is step of finite difference algorithm. For function ζ there is Noumerov algorithm based on the finite difference

formula for three consecutive points on a mesh with step h,

ζi+1(R + h) =

[

2 +
h2Ai(R)

1− (h2/12)Ai(R)

]

ζi(R)− ζi−1(R− h).

The boundary conditions at R = 0 is ξ(R) = 0.

Due to this starting point Ri, which is close to R = 0 is

ζ0(Ri) = 0, ζ1(Ri + h) = c, for L 6= 1.,

ζ0(Ri) = −0.2c, ζ1(Ri + h) = c, for L = 1.

Asymptotic at R = Rm for scattering E > 0 is

ξ(Rm) = FL(η, kRm) + CL[GL(η, kRm) + iFL(η, kRm)].

The short-range potential at the matching point Rm is negligible.

Using this boundary condition we determine the CL.



Substituting the value of CL into

F (ϑ) = fC(ϑ) +
1

k

∞
∑

L=0

exp (2iσL)(2L + 1)CLPL(cosϑ)

= −η
exp [−iη ln [sin2(ϑ/2)] + 2iσ0]

2k sin2(ϑ/2)]
+

1

k

∞
∑

L=0

exp (2iσL)(2L + 1)CLPL(cosϑ),

σ(ϑ) = |F (ϑ)|2.

we find the total scattering amplitude and cross section.

.
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Nuclear rainbow in elastic scattering 
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The nucleus-nucleus potential        ( ) ( ) ( ) ( )N COUL lV R V R V R V R                              

The energy density approximation 

The interaction energy between nuclei at the center-to-center distance R  

12 1 2( ) ( )NV R E R E E   .                                   

 

Here             12 1 2 1 2( ) ( ) ( , ), ( ) ( , )p p n nE R r r R r r R dr                   

 

is the energy of the interacting nuclei at finite distance R, 

 

 1(2) 1(2) 1(2)( ), ( )p nE r r dr                                    

 

is the energies of the non-interacting nuclei, 

 ( ), ( ) ( ) ( ) ( ), ( )p n p n Sk p nr r r r v r r                            

 is the energy density functional,   1(2) ( )n r  and 1(2) ( )p r  – neutron and 

proton density of 1(2) nucleus.  

 Potential evaluated in Energy Density Functional has two contributions: 
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- intrinsic kinetic energy of nucleons VT(R),  

- nucleon-nucleon interaction Vnn(R) 

       ( )  ( )  ( )N T nnV R V R V R  ,                      

     where  

1 2 1 2

1 1 2 2

( ) ( ) ( , ), ( ) ( , )

( ), ( ) ( ), ( ) ,

T p p n n

p n p n

V R r r R r r R dr

r r dr r r dr

    

     



 

     

       

               

1 2 1 2

1 1 2 2

( ) ( ) ( , ), ( ) ( , )

( ), ( ) ( ), ( )

nn Sk p p n n

Sk p n Sk p n

V R v r r R r r R dr

v r r dr v r r dr
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Standard double-folding approximation  

The nucleus-nucleus potential in double-folding approximation  

 

1 2 1 1 1 2 2 2( ) ( ) ( , , ) ( , )DF nnV R drdr r V r r E R r  ,                   

 

1 2( , , )nnV r r E  – the nucleon-nucleon interaction. 

The modified double-folding approximation 

(taken into account the intrinsic kinetic energy of nucleons) 

( ) ( ) ( )Df kin T DFV R V R V R   .                               

 

Here 1 2 1 2

1 1 2 2

( ) ( ) ( , ), ( ) ( , )

( ), ( ) ( ), ( ) ,

T p p n n

p n p n

V R r r R r r R dr

r r dr r r dr

    

     



 

     

       

 - kinetic energy of 

nucleons 

 

VDF(R) - double-folding potential, which connect with nucleon-nucleon 

interaction. 
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Therefore:   

Nucleus-nucleus potential has core 

induced by intrinsic kinetic energy of 

nucleons in colliding nuclei. 
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Ogloblin et al. , PHYSICAL REVIEW C 62, 
044601(2000) 
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PHENOMENOLOGICAL PARAMETERIZATIONS OF 

POTENTIAL WITH REPULSIVE CORE 

 

The real part of the nucleus-nucleus potential 

( ) ( ) ( ) ( )C N lv R v R v R v R   .                     
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The centrifugal part 

 

2

2
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( 1)
( ) .

2 / ( )
l

l l
v R
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Here  A1,2  -  the number of nucleons, 

    Z1,2 -  the number of protons in corresponding nuclei,  

e  -  the charge of proton,  

M -  the mass of nucleon,  
1/3 1/3

1 2( )C CR r A A   and  

l -   the orbital momentum value. 
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The imaginary part of the nucleus-nucleus potential consists of 

volume and surface parts 
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Parameterizations  of nuclear part: 

Type A. 

0

1/3 1/3

0 1 2 0

( ) ( )
1 exp ( ) /

N core

V
V R V R

R r A A d


 

    

.    

Vcore(R) is the core potential 

( ) ( , )core coreV R C v R a ,             

where  

3 3
24

, 2
( , ) 3 12

0, 2

a R
Ra R a

v R a

R a

  
   

 
 

                   

Here coreC  and a  are fitting parameters, which depend on the collision energy. 
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Parameterizations  of nuclear part: 

Type B. 
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The nuclear part of potential and the derivative of potential should be 

continuous at the matching point Rm, therefore 

0
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RESULTS AND DISCUSSIONS 

 

We find parameters of the potential by fitting the data for the 16O+12C,  16O+ 16O,  

12С+12C elastic scattering for different collision energy. We minimize 
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2 ( type A) 16.9 17.8  10.85  5.88  6.15 

2 ( type B)  11.01  14.42  7.86  7.79  5.66 

2 (Khoa et al.) 8.4(12.9) 9.0 7.6(9.9) 4.2(5.1) 4.7(5.8) 
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CONCLUSIONS 

- Nucleus-nucleus potential has core induced by intrinsic kinetic energy of 

nucleons in colliding nuclei. 

- We propose two different phenomenological parameterizations for 

nuclear part of potential with the repulsive core at small distances.   
 

- It is possible to describe elastic scattering data 
16
О+

12
C, 

12
C+

12
C and 

16
O+

16
O by using shallow phenomenological potential with the repulsive 

core. 
 

- The elastic scattering data shows that the repulsive core of nucleus-

nucleus potential takes place at distances 2R   fm. 
 

- The cross-section as well as both the near- and far-side cross-section 

components on backward angles are strongly enhanced by the repulsive 

core.  
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