СИНТЕЗ ТА РОЗПАД НАДВАЖКИХ ЯДЕР

В. Ю. Денисов

Інститут ядерних досліджень НАН України, м. Київ

Бюро Відділення Ядерної Фізики та Енергетики НАН України 13 листопада 2014, м. Київ

Основні стадії формування надважких елементів

$$\sigma_{\rm SHE}(E) = \frac{\pi\hbar^2}{2\mu E} \sum_{\ell} (2\ell+1) \cdot \mathcal{W}_{\rm surv}(E,\ell) \cdot T_{\rm CN}(E,B_{\rm inner},\ell) \cdot T_{\rm capture}(E,B_{\rm fusion},\ell).$$

Стадія формування системи дотичних ядер

Потенціал взаємодії ядер:

Тунелювання під бар'єром :

Механізми підсилення проникності бар'єра:

 $V_{\text{Nucleus-Nucleus}}(R, \ell) = V_{\text{nuclear}}(R) + V_{\text{Coulomb}}(R) + \frac{\hbar^2 \ell(\ell+1)}{2MR^2}$ WKB approximation

- зв'язок з 2⁺, 3⁻ коливаннями поверхні ядер

- передача нуклонів з доданими значеннями *Q*-реакції

Напівмікроскопічний потенціал (SMP) між важкими ядрами

Взаємодія між сферичним та аксіально-симетричним ядром в замороженому наближенні

$$V(R,\vartheta) = E_{12}(R,\vartheta) - E_1 - E_2,$$

R – відстань між центрами мас ядер,

 ϑ – кут між віссю аксіальної симетрії деформованого ядра та лінією, що з'єднує центри мас ядер,

$$E_{12}(R,\vartheta) = \int \mathcal{E}[\rho_{1p}(\mathbf{r}) + \rho_{2p}(R,\vartheta,\mathbf{r}),\rho_{1n}(\mathbf{r}) + \rho_{2n}(R,\vartheta,\mathbf{r})] d\mathbf{r},$$
$$E_{1} = \int \mathcal{E}[\rho_{1p}(\mathbf{r}),\rho_{1n}(\mathbf{r})] d\mathbf{r}, \quad E_{2} = \int \mathcal{E}[\rho_{2p}(\mathbf{r}),\rho_{2n}(\mathbf{r})] d\mathbf{r}$$

– енергії з'язку системи двох ядер та першого і другого ядер.

Функціонал густини енергії

$$\mathcal{E}[\rho_p(\mathbf{r}), \rho_n(\mathbf{r})] = \frac{\hbar^2}{2m} [\tau_p(\mathbf{r}) + \tau_n(\mathbf{r})] + \mathcal{V}(\mathbf{r}),$$

де m – маса нуклона. Вирази для функціонала густини кінетичної енергії протонів τ_p та нейтронів τ_n враховують квазикласичні \hbar^2 поправки, які пов'язані з просторовою неоднорідністю потенціалу. Потенціальна частина функціоналу густини енергії має скірмовський та кулонівські (прямий та обмінний) додатки

$$\mathcal{V}(\mathbf{r}) = \mathcal{V}_{\text{Skyrme}}(\mathbf{r}) + \mathcal{V}_{\text{Coul}}(\mathbf{r}).$$

Кулонівська взаємодія двох аксіально-симетричних ядер

Кулонівська взаємодія двох ядер на відстан
іRміж їх центрами мас є

$$V_{\mathrm{C}}(R) = e^2 \int \frac{\rho_1(\mathbf{r}_1)\rho_2(\mathbf{r}_2)}{|\mathbf{R} + \mathbf{r}_2 - \mathbf{r}_1|} d\mathbf{r}_1 d\mathbf{r}_2.$$

Знаменник можно представити у вигляді

$$\frac{1}{\mathbf{R} + \mathbf{r}_2 - \mathbf{r}_1|} = \sum_{\ell_1, \ell_2 = 0}^{\infty} \frac{r_1^{\ell_1} r_2^{\ell_2}}{R^{\ell_1 + \ell_2 + 1}} \frac{4\pi (-1)^{\ell_2} (\ell_1 + \ell_2)!}{\sqrt{(2\ell_1 + 1)(2\ell_2 + 1)}} \times \sum_m \frac{Y_{\ell_1 m}(\vartheta_1, \varphi_1) Y_{\ell_2 - m}(\vartheta_2, \varphi_2)}{\sqrt{(\ell_1 + m)!(\ell_1 - m)!(\ell_2 + m)!(\ell_2 - m)!}},$$

де $Y_{\ell m}(\vartheta, \varphi)$ – сферичні гармоники, $r_i, \vartheta_i, \varphi_i$ – сферичні координати у лабораторній системі координат O_i . ($Y_{\ell m}(\vartheta, \varphi) = 0$ як $|m| > \ell$).

Кулонівська взаємодія двох аксіально-симетричних ядер

$$V_{\rm C}(R,\Theta_1,\Theta_2,\Phi) = \frac{Z_1 Z_2 e^2}{R} \left\{ 1 + \sum_{\ell \ge 2} \left[f_{1\ell}(R,\Theta_1,R_{10})\beta_{1\ell} + f_{1\ell}(R,\Theta_2,R_{20})\beta_{2\ell} \right] \right\}$$

 $+f_2(R,\Theta_1,R_{10})\beta_{12}^2+f_2(R,\Theta_2,R_{20})\beta_{22}^2+f_3(R,\Theta_1,\Theta_2,R_{10},R_{20})\beta_{12}\beta_{22}+f_4(R,\Theta_1,\Theta_2,\Phi,R_{10},R_{20})\beta_{12}\beta_{22}\}.$

Ядерна частина взаємодії двох аксіально-симетричних ядер

$$V_{\rm n}(R,\Theta_1,\Theta_2,\Phi) \approx \frac{C_{10} + C_{20}}{C_{\rm def}} V_{\rm n}^0(d^0(R_{\rm sph},R_{10},R_{20})),$$

де

$$C_{\rm def} = \left[(C_1^{\parallel} + C_2^{\parallel})(C_1^{\perp} + C_2^{\perp}) \right]^{1/2}$$

– узагальнена кривизна, C_i^{\parallel} та C_i^{\perp} – головні кривизни ядра i, i = 1, 2,

 $d^{0}(R_{\rm sph}, R_{10}, R_{20}) = d(R, \Theta_{1}, \Theta_{2}, \Phi, R_{10}, R_{20}, \beta_{1}, \beta_{2}).$

Ядро-ядерний потенціал взаємодії двох аксіально-симетричних ядер залежить від орієнтації ядер в просторі для нульового орбітального момента має вигляд

 $V(R,\Theta_1,\Theta_2,\Phi) = V_{\mathcal{C}}(R,\Theta_1,\Theta_2,\Phi) + V_{\mathcal{n}}(R,\Theta_1,\Theta_2,\Phi).$

Магічні числа надважких ядер. Альфа-розпад надважких ядер

та бар'єри поділу двічі-магічних ультраважких ядер

Магічні числа Z = 8, 20, 28, 50, 82,

N = 8, 20, 28, 50, 82, 126 пов'язані з заповненням нуклонної оболонки.

Ядра з магічним числом нуклонів мають: ⇒ більшу стабільність

- ⇒ більшу жорсткість відносно різноманітних збуджень
- ⇒ більшу поширеність у природі відносно сусідніх ядер.

Залежності енергій відділення нейтронів і протонів від N або Z мають стрибок на магічних числах. Найбільші "експериментально визнані" магічні числа: Z = 114, N = 184. Протонна та нейтронна оболонкові поправки мають глибокий мінімум на магічних числах. Задачі: 1. знайти магічні числа для ядер з A = 300 - 1200 використовуючи умову минимума

оболонкових поправок.

2. знайти $T_{1/2}(\alpha)$ та бар'єри поділу для магічних ультраважких ядер. Ультраважкі ядра можут існувати у нейтроних зірках, магнетарах и т.п. Звязок між числом нейтронів та протонів на лінії β -стабільності Гріна:

$$N_{Green} = \frac{2}{3}Z + \frac{5}{3}(10000 + 40Z + Z^2)^{1/2} - \frac{500}{3}.$$
 (1)

Обчислимо протони δ_P та нейтрони δ_N оболонкові поправки вздовж лінії β -стабільності Гріна для Z = 76 - 400, N = 102 - 820, A = 178 - 1218.

$$Z = 76, 78, 80, \dots 400.$$
$$N = N_{Green} - 10, N_{Green} - 8, N_{Green} - 6, \dots N_{Green} + 10$$

Середнє поле: Потенціал Вудса-Саксона з кулонівським та спін-обертальним доданками і парування нуклонів у рамках моделі Липкіна-Ногамі. Параметрізація потенціала Вудса-Саксона: "universal" - S.Cwiok, et al, СРС **46** 379 (1987).

Магічні числа для важких та ультраважких ядер: Протонні магічні числа: Z= 82, 114, 164, 210, 274, 354 Нейтронні магічні числа: N= 126, 184, 228, 308, 406, 524, 644, 772

Порівняння з розрахунками других авторів:

Z=82, 114, 164 and N=126, 184, 228 \Leftrightarrow Shell model.

S.G. Nilsson, I. Ragnarsson I., Shapes and shells in nuclear structure (Cambridge Univ. Press, Cambridge, 1995).

Z≈114-126, Z≈164, N≈172-184, N≈228, N≈308, N≈406 ⇔ <u>HFB+Skyrme or RMF</u> Існує сильна залежність від <u>моделі</u> та <u>набору параметрів силових констант</u>. М. Bender, W. Nazarewicz, P.-G. Reinhard, Phys. Lett. **B515**, 42 (2001).

Бар'єри поділу ультраважких двічі-магічних ядер

Залежність магічного числа від наближення до середнього поля.

Альфа-розпад ультраважких ядер

Ν

Дякую за увагу!

•