

International Symposium "Super-Heavy Nuclei"

Super-Heavy Nuclei: Current Status and Future Developments

Sigurd Hofmann

GSI Darmstadt and University Frankfurt

Texas A&M University, College Station, Texas 77840, USA March 31 – April 2, 2015

Results from cold and hot fusion

Predictions of the macroscopic-microscopic model

Calculation: R. Smolanczuk, A. Sobiczewski et al.; P. Möller et al.

Predictions of the macroscopic-microscopic model

Calculation: R. Smolanczuk, A. Sobiczewski et al.; P. Möller et al.

So far, good agreement with experiment

even-even

Shell effects in different models

Macroscopic-microscopic

Mean field 2B(N,2) - B(N,2-2)-B(N,2+2) 114 120 120 3 280 300 140 160 Neutron Number N 40 260 280 300 16. RUTZ (997 et al.

K. Rutz, W. Greiner et al., 1997

A. Sobiczewski et al., 1995

Single particle energies

Protons, **Z** = 114

Neutrons, N = 184

P. Möller et al, 1997

Hypothesis: structured island of SHN?

Q_{α} values: experiment and theory

Alpha-decay chain passing ²⁹¹Lv

Masses and shell-correction energies

Unknown mass of end point adjusted to theoretical value

Experiment [DGFRS-FLNR]

Shell-correction energy and fission barrier

$$T_{1/2} \sim \exp \int B[V(r) - V_0]^{1/2} dr$$

A. Sobiczewski et al.

Shell-correction energies and fission barriers

Experiment [DGFRS-FLNR]

Shell-correction energies, experiment and theory

 Q_{α} from experiment: Yu.Ts. Oganessian et al. (1999-2015) Theory, FRDM: P. Möller et al., (1995)

Shell-correction energies, experiment and theory

 Q_{α} from experiment: Yu.Ts. Oganessian et al. (1999-2015)

```
Theory, FRDM:
P. Möller et al., (1995)
```

Shell-correction energies, experiment and theory

 Q_{α} from experiment: Yu.Ts. Oganessian et al. (1999-2015)

Theory, FRDM: P. Möller et al., (1995)

E_{SC} experiment and $-E_{FB}$ theory

 Q_{α} from experiment: Yu.Ts. Oganessian et al. (1999-2015)

Theory, -fiss. barriers: M. Kowal, A. Sobiczewski et al., (2010)

Neutron-binding energy

Calculations reproduce well σ (114, 116) with FB (FRDM)

Conclusion:

Lower CN fission barriers demand less quasi-fission and/or less damping (E*) at flerovium and livermorium

V. Zagrebaev and W. Greiner, 2008

ER cross-section as function of fission barrier

 ${}^{48}Ca + {}^{238}U \Longrightarrow {}^{283}Cn + 3n$

 $^{48}Ca + ^{249}Cf \implies ^{294}118 + 3n$

V.I. Zagrebeav et al., Phys. At. Nucl. 66,1033 (2003) V.K. Siwek-Wilczńyska et al., Int. J. Mod. Phys. E 19, 500 (2010)

Requirements for confirmation

- 1. Decay data of more isotopes of 118 and of the new element 120
- 2. Masses of nuclei at the end of the chains

⁴⁸Ca + ²⁵⁷Fm => ³⁰⁵120* (E* = 26 MeV)

⁵⁰Ti + ²⁵¹Cf => ³⁰¹120* (E* = 30 MeV)

⁵⁴Cr + ²⁴⁸Cm => ³⁰²120* (E* = 31 MeV)

Most neutron-rich isotopes with radioactive beams

SHIP Z = 120 Collaboration (2015)

S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Münzenberg, W. Barth, H.G. Burkhard, L. Dahl, B. Kindler, I. Kojouharov, R. Lang, B. Lommel, J. Runke, C. Scheidenberger, K. Tinschert *GSI, Darmstadt, Germany*

R.A. Henderson, J.M. Kenneally, K.J. Moody, D.A. Shaughnessy, M.A. Stoyer LLNL, Livermore, USA

R. Grzywacz^a, K. Miernik^b, D. Miller^a, J.B. Roberto, K.P. Rykaczewski ORNL, Oak Ridge ^aand Univ. of Tennessee ^band Univ. of Warsaw

K. Eberhardt, P. Thörle-Pospiech, N. Trautmann University Mainz, Germany

A.G. Popeko, A.V. Yeremin Joint Institute for Nuclear Research, Dubna, Russia

J.H. Hamilton Vanderbilt University, Nashville, USA

S. Antalic University Bratislava, Slovakia

J. Uusitalo University Jyväskylä, Finland

K. Morita RIKEN, Saitama, Japan

K. Nishio JAEA, Tokai, Japan

Ion source and accelerator

Projectile energy control using cusp-electrons

Transverse beam shaping with octupole lenses

Measured beam profiles at the target position

Reduction of tails as source of background

J. Klabunde, GSI Internal Report INJ 01-1001 (2001)

On-line target control

Typical low-energy heavy-ion experiments

Typical experiments

Tranfer-reactions:

Subbarrier fusion:

Proton radioactivity, beta-delayed fission, shape co-existence:

Spectroscopy:

K-isomers:

Decay chains:

Experiments:

Argonne Berkeley Darmstadt Dubna GANIL JAEA Jyväskylä RIKEN and others

Improvement of the separator, example SHIP

GSĬ

Experiments after stopping in gas

Penning Trap or Multi-Reflection TOF for precision mass spectroscopy and isobaric purification: Short and long lifetimes, independent from decay mode

Collinear laser spectroscopy Alpha-, beta-, gamma-spectroscopy Conversion electron spectroscopy Fission-fragment mass measurement Atomic beams, Stern-Gerlach experiment

Trying to square the circle

Properties of some collective excitations ... S. Mişicu, T. Bürvenich, T. Cornelius, W. Greiner Inst. für Theoretische Physik, Univ. Frankfurt J. Phys. G: Nucl. Part. Phys. 28, 1441 (2002)

W. Greiner, 1965-70

Toroidal and Spherical Bubble Nuclei C.Y. Wong Oak Ridge National Laboratory, Oak Ridge Wong, C.Y.: Ann. Phys. 77, 279 (1973)

Summary of results and projects for the future

⁵⁴Cr + ²⁴⁸Cm => ³⁰²120*, 38 (34) days in 2011

Results from ⁵⁴Cr + ²⁴⁸Cm

Properties of events measured during the ${}^{54}Cr + {}^{248}Cm$ experiment at SHIP on May 18, 2011 at 4:20 h.

Assignment	E / MeV	Δt	Position ^{a)}	Remarks ^{b)}
ER ?	26.0	<i>−</i> 5.4 s	16–22.6	TOF 1 and 2, no VETO
α1?	13.14 ± 0.03	0 s	16–22.8	no TOF, no VETO
α2?	11.81 ± 0.04 ^{c)}	261 ms	16–25.4	no TOF, no VETO
α 3, ²⁹¹ Lv ?	10.70 ± 0.03	18.4 ms	16–24.4	no TOF, no VETO ^{d)}
SF ?	223 ± 35 ^{e)}	12.0 min	16–24.7	no TOF, no VETO

a) Given is the strip number of the stop detector and vertical position y in mm;

Resolution (FWHM) in vertical direction: 0.4 mm (ER– α , $\alpha - \alpha$);

2.9 mm (ER, α – esc- α , E_{α} <2 MeV);

 $1.2 \text{ mm} (ER, \alpha - SF).$

b) All five events were registered during the 0.3–5.5 ms beam pulses

c) Escape α, 4.93 MeV in stop detector plus 6.88 MeV in box-detector segment number 27.

- d) In the same event was detected a 993-keV signal in one of the Ge detectors. Its relative time in the α-γ TAC spectrum is five standard deviations from the center of the prompt peak. The time resolution was 110 ns (FWHM). Therefore, the signal is considered as a chance event.
- e) In the case of SF: 158-MeV height of signal plus 65-MeV energy deficit.

Q_{α} values: experiment and theory

Shell-correction energies

Shell correction energies, theory and "experiment"

Review of measured alpha-energy systematics

Review of measured alpha-energy systematics

