Lectures on the Physics of the Nucleus

FZ Dresden-Rossendorf, Feb-April 2008

Hermann Wolter

(Ludwig-Maximilians-Universität München)

Overview:

- show possible subjects of lecture
- find out and select, what is of interest to the audience

A. Structure

1. Single particle models

bulk properties, nuclear matter, Fermi gas indep. part. shell model (SM), spin-orbit, SM states, s.p. transitions deformed SM, Nilsson model deformation energy surfaces, Strutinsky shell corrections pairing, quasi-particles, BCS

2. Compound nuclear model

level densities, mean free path

3. NN-interaction

2N-states, bound, scattering realistic interactions, meson exchange, chiral interactions effective interactions, T-, G-matrix, V_{lowk}

4. Many-body methods

SM with residual interactions, no-core SM, Monte-Carlo SM, Greenfct.-MC Hartree-Fock, HF-Bogoliubov, Brueckner-HF field theoretical approach, Quantumhadrodynamics (QHD), Rel. Mean field (RMF)

5. Decay modes

el.magn. decay, multipole-moments and -operators, transition rates α -decay β -decay, weak interaction, parity, Fermi-, Gamow-Teller transitions fission

6. Collective motion: Rotations

dynamic and static deformations, rotations, vibrations, coupling, bands (microscopic) HF, HFB, constrained HBF cranking model, moment of inertia, high spin, back bending

7. Collective motion: vibrations

harmonic vibrations, classification of modes, giant resonances (GR), exotic modes (micr.) TDA, RPA, TDHF, GCM strength functions, sum rules boson expansions, Interact. Boson approximation (IBA)

B. Reactions

1. Reaction theory

scattering states, wave packet schattering, cross sections classical and qm, Born approx. (BA), partial waves, scattering amplitude scattering lengths, effective range theory reactions, two-potential formula, DWBA operator formalism, S-matrix R-matrix approach

2. Compound nucleus scattering

resonances, overlapping resonances, fluctuations (Ericson), CN scattering, Hauser-Feshbach formalism average scattering, optical model

3. Optical Model

Projektion formalism (Feshbach)

complex potential, mean free path, dispersion relations parametrizations, folding,

4. Direct reactions

DWBA, angular distributions, polarization inelastic scattering, collective strength functions charge exchange, β -strength functions transfer, (1 and many nucleon), spectroscopic factors, multistep reactions, CC, CCBA, CRC

5. Statistical reactions

pre-equilibrium reactions exciton models

quantummech. pre-eq. theories (FKK, TUL)

6. Heavy ion collisions

semiclassical features deep inelastic scattering, dissipation transport approach, BUU equations fragmentation

0. Introductory Remarks

Modell des Kerns: <u>Stark wechselwirkendes</u> <u>Vielfeilchensystem</u>

Comparison: Atom --- Nucleus

1. Reaction Theory

discuss essential aspects of theoretical treatment of scattering and reactions,

(this is general and not neccessarily confined to nuclear reactions)

Scattering states, Cross sections

Enstande pos Energie und Stranandhodnig. 1-Olive : encloy walks > transmitt. Welle referct. V(r) strenpotential

Definition of cross section:

a) Wassishes WQ (rol. symm. Pokuhiale) (dass. Bohn di b cord Stepper. b) Reache 2000 Telchezableshall. Jo2000 = JadQ = Jg20000000 do doss JQ = b [db] Bur Berechung Qes (lass. WQ unp Que Borechung O(b) oder b(d) behannt Sein. (b) oder b(d) behannt Sein. (c) oder b(d)

Examples and Applications:

1) Strenning an Funded leading
$$V_c = \frac{2e^2}{7}$$

 $f_c^{(BA)}(q) = -\frac{2m^2e^2}{tr^2q} \int fdr(Swipr) \frac{1}{7} + \int f$

Applications of BA (contd.)

