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0. Introduction: nucleus as a many-body system

1. Reaction theory
1.1. Scattering states, cross sections
1.2  Born approximation
1.3 Partial waves
1.4 Reactions, reaction amplitude, S-matrix
1.5 Optical potential
1.6 Distorted waves, DW Born approximation
1.7 Resonance scattering, 
1.8 R-Matrix approach

2. Compound nuclear reactions
2.1 Compound nucleus
2.2 Low-energy neutron resonances
2.3 Bohr independence hypothesis
2.4 Hauser-Feshbach theory, Wigner-Ewing
2.5 Fluctuations
2.6 Level densities

3. Pre-equilibrium reactions

review briefly



Reactions

���� mainly „direct“ reactions

However, structures in cross section of 
very different width

Weißkopf picture



from Green function solution of the Coupled-Channels-eqs one obtains (similarly as in potential scattering)
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approximation better: 

Distorted Wave Born Approx. (DWBA) �(later)

Reaction amplitude

(analogous to scattering amplitude in potential scattering)



Consequence of complex potential: damping

1.

2.

3.

Optical Potential:

Effective description of scattering in the
presence of open channels



Remarks to the microscopic understanding
of the Optical Potential:

Notes:

1. This s a formal expression; explicit calculation difficult, since sum over all states in Q (but possible
for certain classes of states)

2. General principle: when limiting a wavefunction to a subspace of the complete space, one obtains an 
effective interaction.

If the Q-space contains open channels, the effective interaction becomes complex.

3. Optical potential is analytic as a function of energy. ���� derive dispersion relations, connecting real 
and imaginary part
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Dispersive Optical potential:

From ist microscopic derivation, the optical potential   U(r;E)=V+iW

is an analytic function of the energy E (conneted to causality)

dispersion relation

Volume integrals

threshold anomaly



Distorted Wave Born Approximation (DWBA)

can also be derived from the T-matrix formulation discussed above



Example: Transfer reaction A(a,b)B
Qualitative discussion:

1. Plane wave approx.

2. Zero-range approx

3. Let

contributions mainly from
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Scattering by a complex potential: Reaction cross section
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Partial wave expansion of scatt. amplitude

Differential cross section

Total (elastic) cross section

Absorption (reaction) cross sect. : 
calculated from ingoing flux

Total cross section
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Consequences:

���� Optical theorem, scattered particles missing in forward scattering ampl.

geometrical + diffraction���� max. reaction cross section 0=
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Interference between resonance and potential scattering:
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Single particle resonances (shape resonances)

for simplicity, l=0, square well potential: 

Resonance condition: 

maximal amplitude in interior: 
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Interpretation:

� relation to life time: 
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� total width,    Γα entrance channel width,     Γ−Γα=Γβ exit channel widthτ
h=Γ

���� alternative analysis of resonance condition:
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then, using formulae (2.p back)

with this log. derivative
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Breit-Wigner cross section



R-Matrix Theory
- alternative to partial wave representation

- useful for parametrizatin of compound nucleus reactions
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Complete set of basis fcts. in interior space (r<a) .

with

(single particle potential resonances) : 

Expand any fct. uE in set and calculate R-Matrix 
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(for single resonace):

Breit-Wigner shape

Generalization to Reactions:

Interior CC problem:

Exterior channel fct. 

Reduced widths
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The Compound Nucleus

Bohr picture

Loss of memory of incident channel
(except for conserved quantities (angular
mom.,parity, etc.)

Bohr independence hypothesis:

Formation and decay of CN independent

Strongly fluctuating cross sections



Systematic behavior of cross sections

Angular differential cross 
sections for in a broad energy
range protons on different 
nuclei

Angular differential cross 
sections alpha scattering on 
Mg in fine energy steps



Averaging of cross sections
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general relations

devide into average and fluctuating part

Average elastic, reaction and total 
cross sections

Cross sections defined by the average S-Matrix

the average cross section is typically
given by the optical model

However,
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Evaluation with CN resonances



… thus relation between different cross sections:


