Mendeleev's Table (145 years ago, 63 elements)

Inbunes account account and BE, consenticité un a mainsaire che a soge de mains, D. Mancernete. Ji=50 Ex=90 ?= 180. Ni=B=59. Pl=106,6 CJ+99. H=1. ?= 8 ?= 29 · Cu=63,4 · 4y=101. 14= 200. Le=9.4. 4y=24 Se=65,2 @= 112. 24 nerenost) n l-y o caus ?=75" Ce=92 ? G= 5%? da= 94 ? 9t= 60? Si=95 ? Sn= 750? Sh= 118? Bo & ruema. 18 II 69. Typaay bedrabserages Cononerson vergeo da nucasus, sconorago, monacher usino. aturdant undy to Tomeonten & back xapings by-

Mendeleev's Table

Nuclear Map

Abundance of Elements in the Universe

The 11 Greatest Unanswered Questions of Physics (National Research Council, NAS, USA, 2002):

- 1. What is dark matter?
- 2. What is dark energy?

. . .

3. How were the heavy elements from iron to uranium made?

4. Do neutrinos have mass?

Formation of SH elements in astrophysical r-process

Strong neutron fluxes are expected to be generated by neutrino-driven proto-neutron star winds which follow **core-collapse supernova explosions** or by the **mergers of neutron stars.**

The question: How large is the neutron flux?

Search for SHE in cosmic rays 1971, Dubna, P. Fowler: Tracks of SHE !?

Hand-made chemical elements (reactors and nuclear explosion)

8

Nucleosynthesis by neutron capture

Z+2,A+4 Z+1,A \mathbf{n}_0 is the neutron flux $T_{1/2}^{\ \beta}$ τ_n^{cap} time of neutron capture $\tau_n^{cap} = \frac{1}{n_{o^x}\sigma(n,\gamma)}$ Z,A-1 Z,A Z,A+1 Z,A+2 $(Z,A) \rightarrow (Z,A+1)$ if $T_{1/2} > \tau_n^{cap}$ fission nuclear reactor: $\tau_n^{cap} \sim 1$ year Z-1,A nuclear explosion: $\tau_n^{cap} \sim 1 \ \mu s$ Z-2,A-4 $\frac{dN_{ZA}}{dt} = N_{ZA-1} n_0 \sigma_{ZA-1}^{n\gamma} - N_{ZA} n_0 \sigma_{ZA}^{n\gamma} - N_{ZA} \frac{\ln 2}{T_{zA}^{\beta}} - N_{ZA} \frac{\ln 2}{T_{zA}^{\alpha}} - N_{ZA} \frac{\ln 2}{T_{ZA}^{\beta}} + N_{Z-1A} \frac{\ln 2}{T_{Z-1A}^{\beta}} + N_{Z+2A+4} \frac{\ln 2}{T_{Z+2A+4}^{\alpha}} + \frac{\ln 2}{T_{Z+2A+4}^{\alpha}$ 10 ⁰ neutron fluence: 10^{24} n/cm² 10⁻² Island 10⁻⁴ of Stability 10⁻⁶ explosion $(10^{30} \frac{1}{\text{cm}^2 \text{s}} \times 1 \,\mu\text{s})$ 10⁻⁸ relative yield 10⁻¹⁰L Fermium Gap 257E5257Em 10⁻¹² $T_{1/2}^{fis} < 1 s$ 10⁻¹⁴⁾ 10⁻¹⁶ 10⁻¹⁸ 10⁻²⁰⁾ reactor: $10^{16} \frac{n}{\text{cm}^2 \cdot \text{s}} \times 10^8$ (3 years) 10⁻²²L 10⁻²⁴ 10⁻²⁶ 10⁻²⁸ 10⁻³⁰1 95 charge number 105 90 140 160 180 200

Rapid neutron capture in nuclear explosions

Multiple nuclear explosions

(proposed first by H.W. Meldner, PRL 28,1972) Edward Teller: Technically it is quite possible

Probability for formation of element 112 increases by **90 orders** of magnitude !

Pulsed nuclear reactors of the next generation ?

Hand-made elements (history)

2012: a new player in the field: IMP, Lanzhou, China

Superheavy Elements (Island of Stability)

Synthesis of new elements in fusion reactions

Physics problems

(1) How to choose appropriate fusion reaction ?

«cold» synthesis: ${}^{208}Pb + {}^{64}Ni$, ${}^{70}Zn$, ... $\rightarrow {}^{272}110$, ${}^{278}112$, ... (GSI, Germany)

«hot» synthesis: 238 U, 244 Pu, 248 Cm, 249 Cf + 48 Ca $\rightarrow ^{286}$ 112, 292 114 , 296 116 , 297 118 (Dubna)

Symmetric combinations: $^{148}Nd + ^{154}Sm \rightarrow ^{302}122$?

Radioactive ion beams of ¹³²Sn, etc. ?

Synthesis of SHE in fusion reactions (conventional view)

 P_{xn} : Survival probability of excited CN (Statistical Model: Γ_n , Γ_f , E_n^{sep} , B_{fis})

http://nrv.jinr.ru/nrv/Fusion

Decay and survival of excited compound nucleus

$$P_{x11} = \int_{0}^{E_{0}^{*}-E_{n}^{sep}(1)} \left(E_{0}^{*},J_{0}\right) P_{n}(E_{0}^{*},e_{1}) de_{1} \int_{0}^{E_{1}^{*}-E_{n}^{sep}(2)} \left(E_{1}^{*},J_{1}\right) P_{n}(E_{1}^{*},e_{2}) de_{2} \cdots \int_{0}^{E_{1}^{*}-E_{n}^{sep}(x)} \left(E_{x-1}^{*},J_{x-1}\right) P_{n}(E_{x-1}^{*},e_{x}) G_{N\gamma}(E_{x}^{*},J_{x}\rightarrow g.s.) de_{x} de_{$$

Cross section for formation of evaporation residues:

$$\sigma_{\mathsf{EvR}}^{\mathsf{Xn}}(E) = \frac{\pi}{k^2} \sum_{\ell} (2\ell+1) P(E,\ell) \cdot P_{\mathsf{CN}}(E^*,\ell) \cdot P_{\mathsf{Xn}}(E^*,\ell) + \frac{18}{k!} P_{\mathsf{Xn}}(E^*,\ell) + \frac{18}{k$$

Decay widths and survival probability

Fusion reactions with light projectiles

Formation of compound nucleus after contact, $P_{CN} = ?$

Competition of deep inelastic scattering, quasi-fission and fusion

Variables ?

- ? principal degrees of freedom: { $q_1, q_2, ...$ },
- ? potential energy surface: $V(q_1,q_2,...), \langle q_1,q_2,..., \rangle$
- ? dynamic equations of motion: $dq_i/dt = ...$

Common (unified) for all the processes: Deep Inelastic, Quasi-Fission, Fusion-Fission !!!

Potential Energy: Dependence on mass rearrangement

Potential Energy: Fusion, Fission and Quasi-Fission

Predictive power of the theory for the hot fusion reactions

Synthesis of superheavy elements (cold and hot fusion)

Cross sections of the "cold" and "hot" synthesis of SHE

Cross sections for formation of SHE with Z=112-118 have been predicted to be nearly constant owing to increasing values of the fission barriers of formed CN

Great progress in synthesis of superheavy nuclei. What's the next?

New elements 119 and 120 are coming !

The gap in SH mass area must be filled somehow

Our ability of predictions in superheavy mass area

Predicted cross sections are high enough to perform experiments at available facilities just now

Mostly proton-rich nuclei were studied so far in the upper part of the nuclear map

Narrow pathway to the island of stability just by fusion reactions !

Synthesis of SH nuclei in transfer reactions

- [1] E. K. Hulet et al., Phys. Rev. Lett. 39, 385 (1977).
- [2] M. Schaedel et al., Phys. Rev. Lett. 41, 469 (1978).
- [3] H. Essel, K. Hartel, W. Henning, P. Kienle, H. J. Koerner, K. E. Rehm, P. Sperr, W. Wagner, and H. Spieler, Z. Phys. A **289**, 265 (**1979**).
- [4] H. Freiesleben, K. D. Hildenbrand, F. P uhlhofer, W. F. W. Scneider, R. Bock, D. V. Harrach, and H. J. Specht, Z. Phys. A **292**, 171 (**1979**).
- [5] H. Gaeggeler et al., Phys. Rev. Lett. 45, 1824 (1980).
- [6] M. Schaedel et al., Phys. Rev. Lett. 48, 852 (1982).
- [7] K. J. Moody, D. Lee, R. B. Welch, K. E. Gregorich, G. T. Seaborg, R. W. Lougheed, and E. K. Hulet, Phys. Rev. C 33, 1315 (1986).
- [8] R. B. Welch, K. J. Moody, K. E. Gregorich, D. Lee, and G. T. Seaborg, Phys. Rev. C 35, 204 (1987).

... a long history.

Isotopes of Fm and Md were synthesized 30 years ago.

Theoretical models of transfer reactions

Multi-nucleon transfers in damped collisions

Master equation L.G. Moretto and J.S. Sventek, Phys. Lett. B **58**, 26 (1975)

Fokker-Plank equation W. Norenberg, Phys. Lett. B 52, 289 (1974)

Langevin equations

P. Frobrich and S.Y. Xu, Nucl. Phys. A477, 143 (1988)

Semi-classical approaches

E. Vigezzi and A. Winther, Ann. Phys. (N.Y.) **192**, 432 (1989). V.I. Zagrebaev, Ann. Phys. (N.Y.) **197**, 33 (1990).

Few-nucleon transfers (GRAZING)

A. Winther, Nucl. Phys. **A594**, 203 (1995) http://personalpages.to.infn.it/nanni/grazing

Adiabatic dynamics of low-energy heavy ion collisions and nucleon transfers

- overlapped mean fields
- two-center shell model
- adiabatic potential energy

 $\frac{dR}{dR} = \frac{p_R}{p_R}$ Variables: { R, θ , ϕ_1 , ϕ_2 , β_1 , β_2 , η_Z , η_N } $\frac{d\Theta}{dt} = \frac{\ell}{\mu_R R^2}$ Most uncertain parameters: μ_0, γ_0 - nuclear viscosity and friction, λ_Z^0 , λ_N^0 - nucleon transfer rate $\frac{d\varphi_1}{dt} = \frac{L_1}{\mathfrak{I}_1}, \ \frac{d\varphi_2}{dt} = \frac{L_2}{\mathfrak{I}_2}$ $\eta = \frac{A_{1} - A_{2}}{A_{1} + A_{2}}$ $\eta_{Z} = \frac{Z_{1} - Z_{2}}{Z_{1} + Z_{2}}$ φ1 $\frac{d\beta_1}{dt} = \frac{p_{\beta 1}}{\mu_{\beta 1}}$ A₁ b θ $\frac{d\beta_2}{dt} = \frac{p_{\beta 2}}{\mu_{\beta 2}}$ $\eta_{N} = \frac{N_{1} - N_{2}}{N_{1} + N_{2}}$ $\langle \phi_2$ A2 $\frac{d\eta_{z}}{dt} = \frac{2}{Z_{cN}} D_{z}^{(1)} + \frac{2}{Z_{cN}} \sqrt{D_{z}^{(2)}} \Gamma_{z} (t)$ $\lambda_{\mathbf{Z}}^{\mathbf{0}} = \lambda_{\mathbf{N}}^{\mathbf{0}} = \frac{\lambda^{\mathbf{0}}}{2}$ $\frac{d\eta_{\rm N}}{dt} = \frac{2}{N_{\rm CN}} D_{\rm N}^{(1)} + \frac{2}{N_{\rm CN}} \sqrt{D_{\rm N}^{(2)}} \Gamma_{\rm N} (t)$ $\frac{dp_R}{dt} = -\frac{\partial V}{\partial R} + \frac{\ell^2}{\mu_R R^3} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right)\frac{\partial \mu_R}{\partial R} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2}\frac{\partial \mu_{\beta_1}}{\partial R} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2}\frac{\partial \mu_{\beta_2}}{\partial R} - \gamma_R \frac{p_R}{\mu_R} + \sqrt{\gamma_R T}\Gamma_R(t)$ $\frac{d\ell}{dt} = -\frac{\partial V}{\partial 9} - \gamma_{\text{tang}} \left(\frac{\ell}{\mu_{\text{p}}R} - \frac{L_{1}}{\Im_{1}}a_{1} - \frac{L_{2}}{\Im_{2}}a_{2} \right) R + \sqrt{\gamma_{\text{tang}}T}\Gamma_{\text{tang}}(t)$ $\frac{dL_1}{dt} = -\frac{\partial V}{\partial \varphi_1} + \gamma_{\text{tang}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_1 - \frac{a_1}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dL_2}{dt} = -\frac{\partial V}{\partial \varphi_2} + \gamma_{\text{tan}} \left(\frac{\ell}{\mu_R R} - \frac{L_1}{\Im_1} a_1 - \frac{L_2}{\Im_2} a_2 \right) a_2 - \frac{a_2}{R} \sqrt{\gamma_{\text{tang}} T} \Gamma_{\text{tang}}(t)$ $\frac{dp_{\beta_1}}{dt} = -\frac{\partial V}{\partial \beta_1} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_1} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_1} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_1} - \gamma_\beta \frac{p_{\beta_1}}{\mu_{\beta_1}} + \sqrt{\gamma_{\beta_1} T} \Gamma_{\beta_1}(t)$ $\frac{dp_{\beta_2}}{dt} = -\frac{\partial V}{\partial \beta_2} + \frac{p_{\beta_1}^2}{2\mu_{\beta_1}^2} \frac{\partial \mu_{\beta_1}}{\partial \beta_2} + \frac{p_{\beta_2}^2}{2\mu_{\beta_2}^2} \frac{\partial \mu_{\beta_2}}{\partial \beta_2} + \left(\frac{\ell^2}{2\mu_R^2 R^2} + \frac{p_R^2}{2\mu_R^2}\right) \frac{\partial \mu_R}{\partial \beta_2} - \gamma_\beta \frac{p_{\beta_2}}{\mu_{\beta_2}} + \sqrt{\gamma_{\beta_2} T} \Gamma_{\beta_2}(t)$

39

Typical trajectory in the "distance-deformation-mass asymmetry" space (48Ca + 248Cm, E=210 MeV)

Simulation of experiment. Cross sections

Dynamics: 10^6 tested events (trajectories), Statistical model: 10^{-6} (3n), 10^{-7} (4n) survival probability cross sections up to 0.1 pb can be calculated

Quite satisfactory agreement with experiments on DI scattering

Quasi-Fission process is understood quite well (example: ⁴⁸Ca + ²⁴⁸Cm)

43

Shell effects: lead valley

normal (symmetrizing) and inverse (anti-symmetrizing) quasi-fission

238U + 248Cm. Primary fragments

Production of transfermium nuclei along the line of stability looks quite possible in multi-nucleon transfer reactions

Production of new heavy nuclei in the region of N=126

Fusion reactions

How to separate a given nucleus from all the other transfer reaction products ?

Selective laser ionization ! (Au & Hg as an example)

New setup for selective laser ionization of multi-nucleon transfer reaction products stopped in gas

