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Simplerelations giving the excitation energy, width, strength function, and transition densities of
dipole resonances are derived in the thin diffusenuclear surface layer approximation. The proton
vibrations relative to the neutrons in the interior of the nucleus are dynamicaIly coupled to the
proton surface layer oscilJations relative to the neutron surface layer by certain boundary condi-
tions at the effectivenuclear surface. The proposed model of dipole oscillations unifies the Stein-
wedel-Jensen (Z.Naturforsch. Teil A 5,413 (1950)) and Goldhaber-TeIler (Phys. Rev. 74,1046
( 1948) ) models, which can be obtained from it as specific limiting cases. The model in question
can easily be generalized to the case of isovector resonances of other multipole orders.

1. INTRODUCTION

The possibility of interpreting the dipole resonances on
the basis of both zerol-3 and first 4-7sounds has been repea-
tedly pointed out in the literature. The direct use of the Lan-
dau kinetic equation for zero sound, the hydrodynamic
equations in the case of first sound, or the microscopic or
semimicroscopic equations based on the independent nu-
cleon model is complicated by the occurrence of a relatively
sharp change in the density at the nuclear boundary and the
relatively smaIl nuclear size. But it is precisely this behavior
of the density which aIlowsus to introduce an effectivesharp
nuclear surface fixedby the locus of the points of maximum
density gradient.8.9The introduction of an effectivesurface
significantly facilitates the description of the dynamics of
the coIlectivemotion in the nuclear surface layer.

In the present paper we consider the isovector multi-
pole resonances within the framework of the gas-droplet
model of the nucleusJOin the effective surface approxima-
tion. We describe the density-component dynamics in the
interior of the nucleus, using either the Landau equation for
zero sound 11-14or the hydrodynamic equations. Because the
density in the interior of the nucleus is practicaIly constant,
these equations are the same as the equations in an infinite
medium. At the effective nuclear surface these oscillations

. fulfiIlcertainboundaryconditions.This methodof solving
the problem has been used to describe the isoscalar density
osciIIations8.1sand the isoscalar current osciIIations not in-

- volvingdensityvariations16 in nuclei.
In the case of the isovector density oscillations the

boundary conditions at the effective nuclear surface are
especiaIIysimple. The first boundary condition ensures the
equality of the mean proton (neutron) velocity in the direc-
tion of the normal to the effectivesurface and the mean ve-
locity for the normal displacement of the effective proton
(neutron) surface. The displacement of the effectiveproton
surface relative to the effective neutron surface in the nu-
clear surface layer givesrise to a restoring force that tends to
liquidate this displacement. Connected with these forces is
the second boundary condition, which ensures the equality
of the normal-to the effective surface-component of the
restoring surface force acting on a unit nuclear surface area
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and the corresponding component of the stress tensor con-
nected with the density oscillation in the interior of the nu-
cleus. These boundary conditions differ from the boundary
conditions proposed in Refs. 3-5 and 7, for the latter condi-
tions contain other quantities.

2. RESONANCE ENERGY

Let us consider in greater detail the boundary condi-
tions at the effectivesurface (ES) that describe the dynamics
of the isovector density osciIIations in the nuclear surface
layer. As the protons osciIIate relative to the neutrons, the
proton and neutron ES move relative to each other. Let us
denote the displacement of the proton (neutron) ES from its
equilibrium position by ~P(N)(r, f). The suffix P corre-
sponds to the proton quantities; the suffixN, to the neutron
quantities. Then the first boundary condition is that the nor-
mal velocity of the proton (neutron) ES should be equal to
the mean normal velocity Vp(N)(r, t) of the particles, i.e.,

(VPCN)(r, t)n) IES=( (d~PCN)(r, t)/dt)n) lEg. (1)

The vector n is oriented along the normal to the ES.
The displacement of the proton ES relative to the neu-

tron ES in the nuclear surface layer gives rise to forces that
try to reestablish the equilibrium distance between the pro-
ton and neutron ES. The surface energy corresponding to
these forces has the form7,I7

EC')= (B-/41tro') JdS(~N(r, t)-~p(r, t»\
ES

(2)

where B - is the isovector stiffness coefficient against dis-
placement of the surface, the nuclear radius isR = roA 1/3,A
is the number of nucleons in the nucleus, and dS is an ele-
ment of nuclear surface area. The coefficientB - in (2) can
be expressed in terms of quantities that are determined by
the nuclear energy density functional (see the Appendix).
The resultant force acting on a unit surface area in the direc-
tion of the normal to the surface is equal to the derivative of
the deformation energy (2) with respect to the normal dis-
placement of the proton ES relative to the neutron ES:

PC,)=(B-/21tro')«~N(r, t) -tp(r, t) )n) IES' (3)
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This presure on the ES of the nucleus should be balanced by
the corresponding component of the stress tensor 0';;;'(r, t)
connected with the isovector density oscillations in the inte-
rior of the nucleus:

P<')=/jnn - (r, t) lEg.

1.Zero sound + ES. Let us consider the dynamics of the
isovector density oscillations in the interior of the nucleus in
the zero sound,+ ES system. In the sharp density-edge ap-
proximation the equations in the interior of the nucleus are
the same as the equations in an infinite medium. Therefore,
the equations for the protonfp (r, p, t) and neutronfN (r, p,
t) quasiparticle distribution functions have the form 11-13

al,(r,p,t) +Lv [/ .( t) +~ ( - )
at . M' T . r,p, u 8 81'

X n~,Jd't' L, Ffs(p. p') /;(r, p', t) ]=0,
pp i-P,N

Here

i, j=P, N, d;;' =2dp' 1 (2nli) 3,

M* is the effectivemass of the quasiparticles, andpF is the
limiting Fermi momentum: Fpp (p, p'), FNN(p, p') and
FPN(p, p') are the constants in the proton-proton, neutron-
neutron, and proton-neutron quasiparticle interaction am-
plitudes, respectively. All the interaction constants are ex-
pressed in units of 2r?fi!/PFM*. Neglecting the Coulomb
interaction, we set, in view of isotopic invariance, Fpp(p,
p') = FNN(p, p'). It is assumed that the Fermi energiescF of
the proton and neutron quasiparticles are equal (conse-
quently, the number of protons is equal to the number of
neutrons), and that the nuclear temperature is equal to zero.
Let us represent the constants in the quasiparticle interac-
tion amplitudes in the form11-13

F'J(p, P')=FOii+F, ,;(pp')/PF2+,..

and limit ourselves to the consideration of only the first term
of this expansion. The effective mass M * is then equal to the
nucleon mass M (M * = M). Adding and subtracting the
equations(5), weobtain

of' (r,p,t)
at

p [ - n21i" ( S
, ' )]+ M vT t"(r,p,t)-+6(8-81')PFM F..~ d;; I~(r,p ,t) =0,

(6)
where

t=(r, p, t)=IN(r, p, t):1:.lp(r, p, t), F/'=F,pp:1:.F'PN. (7)

In the case of plane waves the solutions to Eq. (6) are ob-
tained in Refs. 11-13:

Ik%(r,p, t) = (CXN:1:.CXP)6(8-81')Y%(p, k)exp(i(kr-rot», (8)

where w is the oscillation frequency, k is the wave vector,
ap,N are the amplitudes, and

y%(p, k) = (cos(pf\k) 1(S%-COS(pf\k»),

s%=rolkvl" Vl'= (281'1 M) 1/,.
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Here and below p Ak denotes the angle between the vectors p
and k. The quantities s:l: in (9) are determined from the
equations

G-' (S%)"'" (s%/2)In( (S%+1)/ (s%-1» -1=1IFo%, (10)
(4) For an infinite homogeneous medium the solutions (8)

are physical. In a finite medium these solutions can be re-
garded as a set of formal solutions to the original system of
equations (5) or the equations (6). The plane-wave solution
(8) constitutes a continuum of solutions with k vectors dif-
fering in magnitude and direction. Since the equations (5) or
(6) are a set of linear homogeneous equations, we can con-
struct a more general solution by taking a superposition of
the particular solutions (8) in the form

1%(r, p, t) = S dkA (k!\z) It % (r, p, t). (11)

(5) Here A (k Az) is a weight function with the aid of which the
superposition of plane waves with wave vectors k is con-
structed and z is the preferred direction in space. We are
interested in the solution with a fixed frequency; therefore,
taking account of the relation between k and w in (9) and
(10), we construct the superposition in only the space of the
angles of the vector k.

Let us further consider the isovector oscillations of a
density of definite multipole order I, taking

PI- (r, t) = Jd;;f- (r, p, t) =R, (r) Y,o (r!\z) exp( -irot), (12)

where RI (r) is some radial function. The dipole resonances
correspond to 1= 1. For convenience of computation, we
take the time dependence of the physical quantities in the
form exp( - iwt). In this paper we consider the isovector
density oscillations in nuclei with a spherical equilibrium
shape, for which the generalization to the case of an angular
dependence of the form Ylm (r, z) with m:;60 is trivial. Sub-
stituting (8), (9), and (11) into (12), we find

A (k!\z) = Y1o(k!\z),

2(4n)2pl'M .

R1(r)-:-(cxN-a,P) (2nli)3Fo- J,(kr),

where jl (kr) is the spherical Bessel function. The proton
(neutron) flux velocity is equal to

Vp(N) (r, t) = (1IMpp(N» Jd;;pfp(N)(r, p, t). (15)

(13)

(14)

Here

PP= (Z/ A) p, pN=(NIA)p, p=3A14nR",

Z is the number of protons, N is the number of neutrons, and
A = Z + N. The condition for the preservation of the posi-
tion of the center of mass gives the relation

S drrYlO(rf\z) (plP(r,t)+plN(r,t»

+R JdS Y,o(r!\z) (Pp(~lP(r, t» n+pN(~lP(r, t» n) =0. (16)
ES

(9)

For the oscillations of multipole order I

(~'P(N)(r, t)n) IES=cx~;1)roexp(-irot) Y1o(r!\z), (17)
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where a~.'?N)is the displacement amplitude for the corre-
sponding effective surface from the equilibrium position.
Then we find from (1) with the aid of (8), (11), (13), (15),
and (17) that, in the case of dipole oscillations, the ampli-
tudes a};')and ai,;>are connected by the relation

C!~)+aW=o. (18)

The protons and neutrons are strongly bound in the nucleus.
Consequently, the displacement of the protons from their
equilibrium position can be represented in the form of an
equivalent displacement of the protons and neutrons. There-
fore, let us extend the condition (18) to those other multi-
pole orders of the density oscillations for which the condi-
tion (16) is identically fulfilled.

The stress tensor component normal to the surface is

a;:n (r, t)

= (1/ M) S d'T:PnPnf- (r, p, t) +p (nZIi3/2PFM) F-p,- (r, t) . (19)

Substituting (8), (9), (11), (15), and (17)-(19) into the
boundary condition (1) and (4), we obtain a set of two lin-
ear homogeneous equations with the unknowns a p and a};').
From the solvability condition for this system we obtain the
following characteristic equation for the determination of
the magnitude k of the wave vector:

g,(x) osj,' (x) - (3BFX/4B-A"') [( 1-3(r)2+G (r) )j," (x)
+ (1-(r)2+(2Fo-+G(IY-) )/3)j,(x)] =0. (20)

Notice that we are considering the zero-sound vibrations in
the case when N = Z. For / = 1 Eq. (20) determines the

magnitude of the wave vector of the dipole resonance. In
(20) a prime denotes the corresponding derivative of the
function with respect to its argument x = kR. Let us denote
the nth root of Eq. (20) with A nucleons by Xln(A). In a
nucleus with A nucleons the isovector-resonance energy
E'n (A) corresponding to this root is equal to

E",(A)=D,n(A)A-"', (21)

where

Din(A) =1i(rVF/R) A "'X'n(A) =2r (1i2BF/2Mro2)"'x'n(.4) ,(22)

s- being given by Eq. (10). As an example, we show in the
upper parts of Figs. 1and 2 plots of Din(A) (0.;;;/.;;;3)com-
puted with F 0- = 1.6,CF = 40 MeV, B - = 43.5 MeV, and
ro= 1.2 fm. The value of the isovector-stiffness coefficient
B - against surface displacement was chosen by comparing
D 11 (A) with the experimental data. This value differs from
the one suggested in Refs. 7 and 17, which was obtained by
fitting the mass formula to the nuclear masses. But the mass-
formula term connected with B - is proportional to
(N - Z) 2/A 4/3;therefore, this coefficientcannot be extract-
ed with a good degree of accuracy by fitting the nuclear
masses. The quantities DII (A) and D21(A) are in good
agreement with the experimental data, which were taken
from Ref. (18). In Fig. 2 we show the experimental values
only for / = 2.

2. First sound + ES. Let us consider the isovector nu-
clear excitations in the first sound + ES system. In this case
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FIG.!. Dependence of the coefficient DII (A) in the expression (21) for
the resonance excitation energy and the resonance width r 11 (A) on the
number of nucleons in the nucleus. The continuous curves indicate the
values for the zero sound + ES system; the dashed curves, those for the
first sound + ES system; the dot-dash curves, those for the SI model; and
the dotted curves, those for the GT model.

O'I;v(r, t) is diagonal, and is related to the isovector volume
compressibility K - of the nucleus and the dynamical corn-
ponentpl- (r, t) of the density in the interior of the nucleus,
Le.,O'I;v(r, t) = opv (K - /9) XPJ - (r, f).

From the hydrodynamical equations for a two-compo-
nent medium we obtain with the aid of the boundary condi-
tions ( 1) and (4) a characteristic equation for the determin-
ation of the magnitude k of the wave vector in the first
sound + ES system for a nucleus with any Nand Z:

gp(x) osg,'(x)- (K-x/3B-A"') (NZ/A2)h(x) =0. (23)

Notice that, for N = Z, Eq. (20) can be transformed into

ZOO l=O

~ 180

~
150

II/O

------
lOO , ~-------...-
80

~;fP:r::~
I/O 80 lZ0 lUO ZOO ZI/O

A

FIG. 2. Dependence of the coefficient DJI CA) in the expression (21) for
the resonance excitation energy for I = 0, 2, 3 (these numbers are indicat-
ed in the figure) and of the resonance width r 21(A) on the number of
nucleons in the nucleus. The designations are the same as in Fig.!.
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(23) by formally setting t:F= K - 16, F 0- = 0, and
s- = 1/[3. These substitutions effect a formal transition
from zero to first sound. By substituting the root of Eq. (23)
into (21) and (22) [after making the indicated substitutions
in (22)], we can find the resonance energies in the first
sound + ES system with arbitrary Nand Z.

The first sound + ES type oscillations unify the Stein-
wedel-Jensen (SJ) and Goldhaber-Teller (GT) models. In
the SJ model the effectiveproton surface does not undergo
displacement relative to the effectiveneutron surface, which
corresponds to the situation in which B - ->-00 (see Ref. 5).
The characteristic equationj; (x) = 0 in this model4.5is au-
tomatically obtained from (23) by going over to the limit
B - ->-00.On the other hand, in the GT model the isovector
volume compressibility is K - = 00 and B - is finite. In this
limit we obtain from (21) - (23) the dependence of the reso-
nance energy on the number of nucleons in the nucleus. This
dependence coincides up to a numerical factor
..jNZlA 2~1/2 with the dependence found in Ref. 6.

For certainK - andB - values wecan findthe isovector-
resonance excitation energies in the first sound + ES system
in the SJ and GT models. In Figs. 1 and 2 the dependence
DlI (A), (21), 1=0, 1, 2, 3, computed for the first
sound + ES system with B - = 43.5 MeV and K - = 450
Me V, is compared with the D SJ(A) obtained in the SJ model
for 1= 1,2 and with the D GT(A) obtained in the GT model.
Usually in the GT model the coefficientd GT in the depen-
dence D GT (A) = d GTA 1/6 is chosen so as to obtain good
agreement with experiment in the region oflight nuclei (see
Fig. 1). Then the coefficient d GT~37 Me V and differs insig-
nificantly from the value d GT~41 MeV obtained with the
aid of (21)-(23) in the appropriate limiting case.

Comparison with the experimental data shows that the
zero sound + ES model agrees well with experiment in a
broad range of nuclei, whereas the SJ model provides a good
description of the region of heavy nuclei and the GT model
describes only the region oflight nuclei. Let us also note that
a good description of the experimental resonance energies is
also possible in the first sound + ES system. Thus, for exam-
ple, for 700 S K - S 800 Me V and 60<,B - <,70 Me V the di-
pole-resonance excitation energies computed in the first
sound + ES system differ from the experimental values by
not more then 5%. These isovector volume compressibility
modulus (K -) values are significantly higher than the val-
ues K - :::::450-500MeV obtained5.14 from the mass formu-
las. But the mass formula term containing K - is proportion-
alto (N - Z)2IA; therefore, the value ofK -, like that ofB -,
cannot be determined with a high degree of accuracy by fit-
ting the nuclear masses.

The energies of the resonances of multipole order I;;.1 in
both the zero and + ES and first sound + ES systems de-
pend weakly on the parameters F 0- , K - , and B -. Thus, a
20% change in these parameters leads to not more than a
10% change in the resonance energies. In the case of zero
sound the resonance energy depends very weakly on the con-
stant F 0- in the quasi particle interaction amplitude. Thus,
the position of a resonance does not change by more than
10% whenF 0- is varied in the range from 0.5 to 4. The

31 SOY. J. Nucl. Phys. 43 (1), January 1986

monopole resonance energies depend more strongly on these
parameters.

3. THETRANSITIONDENSITIES

For small isovector-density oscillations in a nucleus

with a spherical equilibrium shape the transition-density can
be represented in the form of a sum of volume and surface
components:

6plP(N)(r, t)=P1P(N)(r, t)y(r)-pp(N)(~IP(N)(r, t»n(dy(r)/dr).

(24)

Here y(r) is the shape function of the density distribution
about the nucleus. This function can be taken in, for exam-

ple, the form 1)

y(r)= (Hexp( (r-R)jd) )-1;, (25)

where Rand d are the nuclear radius and diffuseness,respec-
tively.Using the boundary conditions (1) and (4), we find
from (24) the radial dependence of the transition density to
be the time-independent quantity

tSpl-(r)=(tSpri(r, t)-tSpp(r, t»/«dN-(~p)Y1O(r!\z)

Xexp (-iwt»=j, (.r:in(A)r/R) y(r)

-j,'(xln(A»jxln(A) (Rdy(r)/dr). (26)

Here Xln(A) is given by (20) or (23). Figure 3 shows the
1= 0, 1,n = 1transitiondensitiescomputedfor a nucleus
with A = 2Z = 2N = 208 in the zero sound + ES system
from the formula (26) with the aid of the shape function
(25). The shape-function parameters, R = 6.6 fm and
d = 0.55 fm, for a nucleus with A = 208 were taken from
Ref. 19.The transition density (26 )forl = 1is compared in
Fig. 3with the transition densities obtained in the SJ and GT
models and in the random phase approximation.2OFor con-
venience of comparison, all the transition densities are nor-
malized at the peaks to unity. Notice that in the SJmodel the
transition density is given by only the first term in (26),
while in the GT model it is given by only the second term.
When both terms are taken into account, the transition den-
sity contains a greater surface contribution than obtains in
the SJ model and a greater volume contribution than obtains

5pl(rl

0

5 fm

FIG. 3. Radial dependence of the transition density for I = 0, 1.The dot-
dash curve with two dots depicts the dependence computed in the random

phase approximation. The remaining designations are the same asin Fig. 1
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in the GT model. The transition densities computed in the
random phase approximation2Oand in the theory of finite
Fermi systems21exhibit similar behavior.

The root of the characteristic equation (20) or (23)
depends on the number A of nucleons in the nucleus; there-
fore, the relative contribution to the transition density from
the first and second terms in (26) varies with A. Thus, as the
number of nucleons in the nucleus decreases, the role of the
second term in (26) becomes greater, i.e., the surface contri-
bution to the transition density increases.

Qualitatively, the transition densities have the same ra-
dial dependence in the first sound + ES system as in the zero
sound + ES system.

4. THE STRENGTH FUNCTION

To find the strength function, let us consider the re-
sponse of a nucleus to an external field

V.:.(t)=v.:.(t)+[v.:.(t) ]+, (27)
v.:. (t) =i. (t) q(r), i,(t) =i. exp (-i(oo+i11) t).

Here 17-- + 0, A. and", are the amplitude and frequency,
respectively, of the external fieldand q(r) is a single-particle
operator, which we choose in the form of a multipole opera-
tor:

A

q(r)= L,ql(ri),
i-I

ql (r) =rlY1o (r!\z) t... l~1,

(28)
A

q(r) = 'L, qo (r,), qO(r)=rt., l=O;
i-I

{

- IJ
.

2 for protonst -
%- 1/2 for neutrons

The strength function S(",) can be expressed in terms of the
imaginary part of the response functionI3.14:

S(oo)=( -1/n) Im m(-(i). (29)

The response function is connected by the simple relations 13

m(oo)=J drqz(r) (cSprP"(r,t) +cSPlN"(r, t»/i.(oo) (30)

with the transition densities OPfp(N)(r, t) in the presence of
the external field (27), (28). Here and below, for simplicity
of computation, we choose the external field in the form of
the first term in (27).

Let us investigate in detail the response to the external
field for I;;.1 in the zero sound + ES system, and give only
the final expressions in the I = 0 case. From the expressions
obtained for the zero sound + ES system we can, by making
the appropriate formal substitutions, go over to the expres-
sions for the first sound + ES system.

ThefunctionsP1P(N) (r, t) and ~lP(N)(r, t) in theexpres-
sion for the transition density OPfp(N)(r, t) contain a contri-
bution due to the external field. In order to compute this
contribution, we must find the quasiparticle distribution
function in the presence of the external field (27), (28). The
potential (27) produces a force field that acts on the quasi-
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particles. Therefore, the system's kinetic equations for the
quasiparticle distribution functions contain terms connect-
ed with (27).13 Subtracting one kinetic equation from the
other, we obtain an equation for the distribution function
f;; (r, p, t) in the presence of an external field:

iJj,,-(r,p,t)
at

p [
n21i'

( - r I - I )]+ l'tfVr j,,-(r,p,t)-cS(8-8F)PFl'tf Fo Jd.j" (r,p,t)

p
=A(t)cS(8-8F) l'tf VrW(r), (31 )

where

W(r) =r'Y/o (r!\z). (32)

Let us, for convenience of computation, replace the multi-
pole external field in this equation by

(2Z+1)!!J .
W(r)= (' )1 dQ.exp(zxr)Y,o(x!\z),4n zx .

(33)

which goes over into (32) in the limit as xr-+O.Thedistribu-
tion function satisfying Eq. (31) with the external field (33)
can easilybe found, sincethe external field (33) is a superpo-
sition of plane waves with wave vectors x having different
directions. Equation (31) is linear; therefore, findingits gen-
eral solution for plane waves, and then constructing a super-
position of the plane-wave solutions in the space of the an-
gles of the vector x with weight YIO(x t\ z), we obtain the
general solution to the equation with the external field (33).
The obtained solution gives in the 0 limit xr-+ the distribu-
tion function/", - (r, p, t) with the multipole external field
(32).

The homogeneous plane-wave solution to Eq. (31) was
obtained above [see (8)]. The particular solution to the
equation with the external field (33) has the form

-
( )- (2Z+1)!lcS( - )

i.(t)exp(ixr)v-(p!\x)

cpx."r, p, t - 4n (ix) I 8 SF 1-Fo-G-' (oo/xvp) .
(34)

Thefunctionsv-(p, x) and G(s) in (34) are defined in (9)
and (10). The general solution to Eq. (31) with the external
field (33) has the form

!,,-(r,p, t)= S dQtYzo(k!\z) (ft-(r,p, t)+cpt~,,(r,p,t». (35)

Here the arbitrariness in the direction of the x vector al-
lowed us to set klk = xix. Let us, using the boundary condi-
tions (1) and (4), express the amplitudes ag~'1)andap(N) in
terms of the external field amplitude A..Then, substituting
the shape functiony(r) = ()(R - r) into (23), we find with
the aid of (30) the response function

m/A«(i) =-l(pR2z+tjl'tfoo2) [szj.(kR) (kRgz(kR+i11» -1_1],

(36)
where

~/=l[1+3/5~o(l-1) (8F/B-)A-'I,],

and ~o = 1. Substituting (36) into (28), we obtain the
strength function
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S/A(00)=(3/81t) (lAR21_2IMH1L, oo-I{j/(Xln(A»
n

/(Xln2(A) Igz'(Xln{A» j»c5(00-E1n(A)/n), (37)

wherexln (A) is the nth root ofEq. (20).
Knowing the strength function, we can compute its mth

moment

S (m) "-m+1
S d ms ( )

\""l
S

(m)
IA=" 0000 lAoo=~ tAn' (38)

The first strength-function moment, which is related to the
resonance intensity, is the most important moment in the
analysis of collective excitations in nuclei. In the case of the
multipole external field (28) the first moment of the
strength function has a model-independent value, 5,14,20S U).
By measuring the S U~in units of S U),wecan findthe de-
gree of exhaustion of the model-independent energy-weight-
ed sum rule (EWSR) by the nth resonance of multipole or-
der/;;..! :

Sl~~181(~)=2sdl(X/n(A»/(Xln2(A) Igz'(Xln(A» I). (39)

Replacing the field (32) by W(r) - fdD.x(exp(ixr)
- 1), and repeating the operations that were carried out
when (32) was replaced by (33) in the I>I case, we obtain
for I = 0 the response function

mOA(00) = (2pR'/M 002)[SOi2(kr)/ (kRgo (kR+ir]» +1] ,

the strength function

SOA(oo)= (3/21t) (AR2/MHo

xL00-'i2 (xon (A»I (xon"(A) Igo' (xon(A» I)
n

Xc5(oo-Eon (A)/n)

(40)

(41)

and the degree of exhaustion of the model-independent
EWSR by the nth resonance

So~~180<:")=1Osoi2(xon(A»I (Xon"(A) Igo'(xon(A» I). (42)

For I = 0 we have the quantity

so= (H3/2( BF/B-)A-'" (HFo-».

Setting formally CF = K - /6, F 0- = 0, S - = 1/..[3,
and Ao= 0 in (35), (37), (39)-( 42), we obtain expressions
for the strength function, the response function, and the de-
gree of exhaustion of the model-independent EWSR by the
nth resonance in the first sound + ES system. Notice also
that (39) yieldsin the limitB - ~oo the same expression
obtained in the SJ model for S U~/S}~) [cf. (39), after the

. formal substitutions have been made in it in the limit
B - ~oo, with the expression (6.688) in Re£. 5].

In both the case of zero sound + ES and the case of first
sound + ES oscillations, the degree of exhaustion of the
model-independent EWSR by the first root of Eq. (20) or
(23) for the resonances of multipole order I> I is close to
unity, and depends weakly on the parameters F 0-, B -, and
K -. Thus, thequantityS U~/sU) changes by not more than
10% when the parameters are changed by 20%. In the case
of the zero sound + ES system the degree of exhaustion of
the model-independent EWSR depends very weakly on the
constant F 0- in the quasiparticleinteraction amplitude.
Thus,S U~/SU) changes by not more than 10% whenF 0-is
varied from 0.5 to 4. The degree of exhaustion of the EWSR
depends more strongly on these parameters in the case of the
resonances of multipole order I = O.

Notice that the degree of exhaustion of the model-inde-
pendent EWSR in the zero sound + ES system can be affect-
ed by the terms connected with the constants F 1:1:in the
quasiparticle interaction amplitude.5 But since IF1:1:1.(I
(Ref. 1), the contribution of these terms to SU~/SU) is
small compared to the leading terms (39) and (42). The
effectofF 1:1:on the resonance excitation energies in the zero
sound + ES system can also be neglected (see also Ref. 15,
where the weak effectofF t on the excitation energies of the
isoscalar resonances is demonstrated).

In Table I we present the degrees of exhaustion, com-
puted with the same parameter values used in the computa-
tion of the excitation energies, of the model-independent
EWSR for the first (n = I) resonances of multipole orders
1= 0, 1, 2, and 3 in the zero sound + ES, first sound + ES,
and SJ models. In the region of medium-weight and heavy
nuclei the computed degreesof exhaustion are in good agree-
ment with Bertrand's experimental data.18 The degrees of
exhaustion of the model-independent EWSR depend weakly
on the number A of nucleons in the nucleus. Thus, whenA is
varied in the range from 40 to 250, the degree of exhaustion
of the model-independent EWSR deviates from the values
given in Table I by not more than 4%.

The contribution from the next (n>2) roots of Eqs.
(20) and- (23) to the degree of exhaustion of the model-
independent EWSR is negligibly small in comparison with
the contribution from the first roots of these equations.

5. RESONANCE WIDTHS

It follows from the experimental investigations of the
decay of the giant dipole resonances that, in the region of
heavy nuclei, the contribution of the exit width to the total
width is small. 18,20,22Therefore, we can estimate the width of
the giant resonances in heavy nuclei by considering only the
quasipartic1e collisions. As a result of the quasipartic1e-qua-

TABLE I. Degrees of exhaustion of the model-independent EWSR.

I

Zero sound + ES

I

First..
l

Steinwedel-JenSen

I

Experiment, %% sound + ES, % model, %

0
1
2
3

~85
~98
~94
~90

"'73
~95
~!M
~93

86
78
72
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80-120
70-100

V. Vu. Denisov 33



siparticle collisions, the wave number k of the zero sound
becomes complex.II-13The width r is proportional to the
imaginary part of k:

f=nS-UF Im k=nsuFYo.

In the case of zero-sound excitations in a Fermi liquid, when
the excitation energy E<,EF'yOis connected with the classi-
cal attenuation factor ]iby the relation 11-13

yO=?[ 1+ (E/2nT) 2].

Here T is the temperature of the system. Knowing ]i,we can
find with the aid of (43) and (44) the width of the giant
resonance of multipole order I in a nucleus with A nucleons if
we substitute into (44) the expression for E = E1n(A) from
(21). To findy, we substitute for the collision integral in the
system of equations (5) the approximate expression given in
terms of the mean free time ro:

I (fP(N) (r, p, t» =-1/ (hO) S dQkA (k;\z) [fkP(N) (r, p, t) -1/pp3

X (Sd;;'fkP(N)(r, p', t) +3 cos(p;\k)

X Sd;;'cos(p';\k)!kP(N)'(r,p,t) )].
After substituting (45) into (5), we find in the limit cur°:;>1
that

y=1/(s-;;OUF) , (46)

where s- is defined in (9), (10). The mean free time of the
quasiparticles is connected with the viscosity of the Fermi
liquid by the relationl2

;;°=5'1]/ (pup2M). (47)

The viscosity of the Fermi liquid is inversely proportional to
the square of the temperatureI2.13:

'1]='1]0/1", (48)

where 1'/0is the coefficient of proportionality. Substituting
(44) and (46 )-( 48) into (43), we obtain

frn(A)=a[ (2nT)2+Ern2(A)], (49)

where

a=npsp/ (10n2'1]o),.

and E1n(A) is defined in (21). It follows from (49) that in
the limit 211'T <,E1n (A)

fin (A) =aEln2(A). (50)

The widths are proportional to the square of the resonance
excitation energy.

In Ref. 23 a semiphenomenological description of the
giant dipole resonance width is given. It is proposed in that
paper that the widths of the resonances in spherical nuclei
are described by the formula (50). The parameter a is deter-
mined there by fitting (50) to the experimental data, and is
found to be equal to a = 0.019:!: 0.005 Mey-l. Choosing
a = 0.02 MeV-I, we find that the quasiparticle-viscosity pa-
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(43)

rameter for the Fermi liquid is equal to 1'/0= 1.84 X 10-21
MeV-sec/fm. The giant dipole resonance widths in spherical
nuclei,. as computed with the aid of (20)-(22) and (50),
then agree well with the experimental values (see Fig. I).
The quadrupole-resonance widths computed with the aid of
(20)-(22) and (50) agree less well with the experimental
data (see Fig. 2). But let us note that the isovector quadru-
pole resonance is observed in inelastic electron scattering
reactions. 18.20It is weakly excited in these reactions, and has
a large width. Therefore, it is difficult to separate it out from
the observed inelastic scattering spectrum, and it is difficult
to determine sufficiently reliably its position, width, and
model independent EWSR strength. 2°

(44)

(45)

6:CONCLUSION

In the paper we have investigated those giant reson-
ances in the gas-droplet nuclear model in the effectivesur-
face approximation which can be considered on the basis of
zero and first sounds. In the case of zero sound the energies,
widths, and model-independent EWSR strengths of the re-
sonances are in good agreement with the experimental val-
ues. But good agreement with the experimental data can also
be achieved in the first sound + ES system when the isovec-
tor volume compressibility modulus K - is sufficientlylarge,
specifically,whenK -lies in the range from 700 to 800 MeV.
Therefore, the problem of interpreting the resonances is a
complicated one. .

In the case of nuclei with nonspherical equilibrium
shapes the resonances split.20,24

In conclusion the author expresses his profound grati-
tude to V. M. Strutinskii for numerous pieces of advice and
useful comments on the work and on the manuscript. The
author also thanks Y. I. Abrosimov, S. M. Vydrug-Vla-
senko, and A. G. Magner for useful discussions.
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APPENDIX

Let us write the nuclear energy density functional in the
OOrm -

1:

,1cW(pp(r), p.v(r) )=bV(pl,(r)+PN(r) )+e(pp(r), PN(r))
+ (~p+yp/pp(r») (V pp(r) 2+ (~N+YN/PN(1') (V PN(1'»)2

+~PNVpp(r) VpN(r), (AI)

where E(pp (r),PN (r» is some polynomial function of the
proton and neutron densities Pp (r) andpN (r) respectively,
/3p, /3N, /3PN, Yp and y N are constants, and b v is the energy
per nucleon in infinite nuclear matter. The equilibrium pro-
ton and neutron density distributions can be found from the
system of variational equations

M' (pp(r), PN(I'»

6pP,(N) (I')

where,up,(N) is the chemical potential of the protons (neu-
trons) .

A displacement of the proton ES by ; relative to the
neutron ES leads to a general shift of the proton and neutron
density distributions:

/J.P,(N), (A2)

pp (I') -+-pp (r-~/2), PN(I') -+-pN(r+~/2). (A3)

The surface energy then depends on ;, and, in the case of
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semi-infinite nuclear matter, has the form
+~

B'(~) =4nr02 S dr[8 (pp(r-~i2), PN (r+~/2)) -J.tppp(r-~/2)

- J.tNPN(r+~/2) ]. (A4)

Then the isovector-stiffness coefficient against surface dis-
placement is defined as

- 2 d2B' (~)
I

B =ro .
d~2 ,~o

(A5)

Substituting (A4) into (A5), and taking (A2) into con-
sideration, we obtain

+~

S
r (

{j {j3 {j {j3 )B-=2:nro' drl~PN -a, pp(r)a;:;PN(r) +a;:PN(r) {jr3pp(r)

-2 {j2€(pp(r), PN(r)) {jpp(r) BPN(r)]. (A6)Bpp(r)BpN(r) Br Br

IIFor a more exact approximation to the shape function, obtained with the
aid of the nuclear energy density functional, see Ref. 9.
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