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Simple expressions are obtained for the magnitudes of the splittings and widths of the isoscalar
and isovector giant resonances in deformed nuclei. The computed quantities are in good
agreement with the experimental data.

1.INTRODUCTION

The isoscalar and isovector giant resonances in axially
symmetric deformed nuclei are split, and have greater
widths. 1-4This splitting has been investigated before in var-
ious microscopic and semimicroscopic theories based on the
independent-nucleon approximation in a self-consistent
field (see Ref. 2 for a review), and also in the simple macro-
scopic Steinwedel-Jensen5 and Goldhaber-Teller6 models
by Danos 7 and Okamoto. H The independent-nucleon ap-
proximation calculations are complicated, and encounter
the difficult problem of the detailed description of the nu-
clear edge. To overcome these difficulties, StrutinskiI et al.9
developed the gas-droplet model, in which the nucleon dy-
namics at the nuclear surface is described with the aid ofwell

known phenomenological constants-the coefficient of sur-
face tension, for example.4 In this model, the inner-density
dynamics in the relatively sharp nuclear edge approximation
is, because of the virtual constancy of the density in the nu-
clear interior, described by the same equations that describe
the density dynamics in an infintie medium. The relatively
rapid variation of the density at the nuclear edge allows the
introduction of an effective sharp nuclear surface, fixed at
the locus of the points of maximum density gradient. 10.11
The inner-density oscillations satisfy specific boundary con-
ditions at the effective surface (ES) of the nucleus. This
method has been used to investigate various characteristics
of the isoscalar giant resonances, 11-14the isovector giant re-
sonances,15 and the isoscalar solenoidal current oscilla-
tions 16 in sphericalnuclei.Let us note that the Steinwedel-
Jensen (SI) 5 and Goldhaber- Teller (GT) 6 modelsarelimit-
ing cases of the model proposed in Ref. 15.

In the case of density oscillations, the nucleon dynamics
in the nuclear interior can be described with the aid of either

Landau'skineticequationfor zerosound,17-19 or the hydro-
dynamic equations.4.1O At the ES of the nucleus,these oscil-
lations satisfy the simple boundary conditions proposed in
Ref. 12 for the isoscalar resonances, and in Ref. 15 for the
isovector resonances.

In the case of the isoscalar density excitations the first
boundary condition requires the equality of the mean nu-
cleon velocity along the normal to the surface and the corre-
sponding velocity of the ES of the nucleus. The second
boundary condition ensures the equality of the normal
stress-tensor component connected with the isoscalar den-
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sity oscillations in the nuclear interior and the surface-ten-
sion-related restoring force acting on a unit area of the dis-
torted surface.

For the isovector density oscillations, the first bound-
ary condition ensures the equality of the mean proton (neu-
tron) velocity along the normal to the ES and the normal
velocity of the corresponding ES. There arise in the surface
layer of the nucleus upon the displacement of the proton ES
relative to the neutron ES restoring forces tending to liqui-
date that displacement. 20.21Connected with these forces is
the second boundary condition, which ensures the equality
of the restoring surface force acting on a unit surface area of .

the nucleus and the corresponding stress-tensor component
connected with the isovector density oscillations in the inte-
rior of the nucleus.

H. EXCITATION ENERGIES AND MAGNITUDES OF THE
RESONANCE SPLlTTINGS

1. The zero sound + ES model

Let us consider the dynamics of the density oscillations
in the interior of the nucleus is the zero sound + ES approxi-
mation. The equations for the distribution functions,/p (r, p,
t) and IN (r, p, t), for the proton-like and neutron-like quasi-
particles in the nuclear interior at zero temperature have the
form 17-19

8f,(r,p,t) p
r~+ M' Vr f.(r,p,t)+6(e-eF)(n2fi3/PFM')

X S d-r:' .E Fi;(p,p')f;(r,p',t) ]=0.
i-P,N

(1)

Here

d-r:'=2dp' / (2nfi) 3;

and i,j = P, N; M * is the effective mass of the quasiparticles,
PF is the limiting Fermi momentum, and Fpp (p, p'),
FNN (p, p'), and FPN (p, p') are the constants in the proton-
proton, neutron-neutron, and proton-neutron quasi particle
interaction amplitudes, respectively. All the interaction con-
stants have been expressed in units of21T2li3/PFM *. Neglect-
ing the Coulomb interaction, we assume on the basis ofisoto-
pic invariance that Fpp (p, p') = FNN (p, p'). It is assumed
in the case of zero-sound excitations that the number of pro-
tons is equal to the number of neutrons, and, consequently,
that the Fermi energies t:F of the proton and neutron quasi-
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particles are equal. Let us represent the constants in the qua-
siparticle interaction amplitudes in the form 17-19

Fii(P, p') =FOii+Fw(pp')lpF2+.. .

and limit ourselves to only the first term of this expansion.
The effective quasi particle mass M * then coincides with the
nucleon mass M. Adding and subtracting Eq. (1), we obtain

af"(r,p,t) p [~+ M'Vr f%(r,p,t)+8(e-ep)(lrHi3/ppM)Fo%

X Sd-r'f%(r,p',t) ]=0, (2)
where

t%(r, p, t)=IN(r, p, t):J:::.lp(r,p, f), Fo%=FOPP:J:::.FoPN,

and the plus and minus indices correspond respectively to
isoscalar and isovector quantities. The solutions to Eq. (2)
in the case of plane waves are given in Refs. 17-19:

"

tk%(r, p, t)=(O:N:J:::.O:p)6(e-ep)'V%(p,k)exp(i(kr-cut», (4)

where lUis the oscillation frequency, k is the wave vector,

'V%(p, k) =cos (p ,t\k) I (S%-COS (p ,t\k) ),
s%=cu/kvp, vF=(2epIM)'I., O:N=:J:::.o:P,

and a p and aN are ampli tudes. Here and below p /\ k denotes
the angle between the vectors p and k. The quantities s:t in
(5) are determined

G-t (s%)== (8%/2)ln( (8%+1)/(8%-1» -1=1IFo%,

For an infinite homogeneous medium the solutions (4)
are physical solutions. In a finite medium these solutions can
be regarded as a set offormal solutions with k vectors differ-
ing in their magnitudes and directions, Since (I) and (2)
constitute a system oflinear homogeneous equations, wecan
construct a more general solution by taking a superposition
of the particular solutions (4) in the form

f,% (r, P, t) = S dkA,% (k, z) fk% (r, p, t),

Here A / (k, z) is the weighting function with the aid of
which the superposition of the particular solutions with
wave vectors k is constructed, z is the preferred direction in
space, and the subscript I willbe definedbelow. We are inter-
ested in a solution with a fixed frequency; therefore, taking
account of the relation between k and lUin (5) and (6), we
carry out the integration in (7) only over the angles of the
vector k.

Let us consider the isoscalar and isovector density oscil-
lations of specificmultipole order I in an axially symmetric,
slightly deformed nucleus. (The 1= 1 case corresponds to
dipole oscillations.) Nuclei with A ~ 40 are only slightly de-
formed22.23;therefore the problem can be solved by the
method of perturbation theory.

In the case of deformed nuclei the radius of the ES has
the form

R(e)=Ro(1+~LYLo(8», Ro=roA"',

where L is the multipolarity, /3L is the deformation param-
eter, and e = r /\ z.
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In an axially symmetric deformed nucleus isoscalar or
isovector density oscillations of multipolarity I and angular-
momentum component m are accompanied by oscillations
in the corresponding density that have the same frequency
and angular-momentum component, but are of different
multipolarityl', with IL -ll<l'(:;fl) < IL + I f-Cinfirst-or-
derperturbation theory in termsoftheparameter/3L)' Con-
sequently the density oscillations have the form

pI%(r, t) 51 S d. It %(r, p, t) = [O:tm«Dlm%(r) Y,m (r, z)
~ ,I, ,

+ ~L~O:"m«Dt'm(r) Y1'm(r,z) exp(-iculmt),
I'

(9)

(3) where the <1>/;'(r) are certain radial functions and the a'm
and a/'m are amplitudes. For computational convenience,
the time dependence of the physical quantities has been tak-
en in the form exp( - ilU/mf). Substituting (4), (5), and (7)
into (9"), we obtain

A,%(k, z) = i-'O:lmY1m(k,z) + ~LL, i-"O:"mY"m(k, z), (10)
I'

«Dlm%(r) = cv%!, (k,mr) , «D/m (r) = cv%tz' (k,mY) ,

(5) c,,'" = (o:/',":J:::.o:p).2(4n)2pFM/(2nfi)3Fo"',

wherej/ (x) is the spherical Bessel function,

(11 )

k'm=kl+()'k'm, CU'm=CU,+().CUlm, ().cu/m=8%vp()'k'm, (12)

(6)
lUland k/ are the frequency and wave vector corresponding
to density oscillations of multipolarity I in a spherically sym-
metric nucleus, and t:.lUlmand t:.k'm are the corrections to
the frequency lU,and wave vector k, that arise as a result of
the deformation of the nucleus.

Knowing the distribution function fp(N) (r, p, f), we
can compute the velocity of the proton (neutron) flux:

VIP(N)(r, t) = (1/MpP(N»S d. pfIP(N)(r, p, t)

and the stress-tensor components

al:v(r,t)=(1/M) Sd,p~pvt""(r,p,t)

(13 )

(7)

+ 8~vFo"'p(n3fi3/2ppM)p,'" (r, t). (14)

Here

p=3/4nro", pp=(ZIA)p, PN=(NIA)p,

Z is the number of protons in the nucleus, N is the number of
neutrons, and A = N + Z. The last term in (14) arises as a
result Qfthe interaction between the quasiparticles.12,15

The boundary conditions at the ES of the nucleus for
the isoscalardensityexcitationshavethe form12

(1/A) «Nv...(r, t)+Pvp(r, t»n)IES=(v+(r, t)n)IES

=(dR(r, z; tilde), (15)

(8)

a",,+(r,t) IEs= .L,a~v+(r,t) (e~n)(evn)IES=2'X(H(t)-Ho),

~ (16)

(The explicit expressions obtained for UI'+(r, t) and
O"I"+,,(r,t) with the aid of (4), (5), (7), and (13)-(16) are
given in Appendix 1.) Here
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TABLE I. Values of the coefficients E I~ (A)A 1/3,
I::.E,t (A)A 1/3//32' and I::.E';;'n(A)A 1/3//32 for different /, as com-
puted in the zero sound + ES approximation,

+ ,;'

I I

+ '/.
dEl! (A)A IB, m 6.Elm,(A)A IJ3,E;1 (A)A'/.

4 152 105

R(r,z;t)=R(8) [1+( at<:')Yzm(r,z)+~LI:a'<"~Y"m(r,z»)
z'

X exp(-iwzmt) ] (17)

is the radius of the dynamical ES of the nucleus, a;;;?is the ES
oscillation amplitude,

n=er-~L dYLo(8) ea
. d8

is the normal to the ES ofthe nucleus, O'n:(r, t) is the stress-

tensor component normal to the ES, the eJl are unit vectors
of the spherical coordinate system, JCis the surface-tension
coefficient,4 and H (t) and Ho are the mean curvatures of the
dynamical and static ES, respectively,

Retaining, in the case of small isoscalar density oscilla-
tions of multipolarity 1 in an axially symmetric deformed
nucleus, retaining the terms of first order in(3L' we find that
the difference between the dynamical and static mean curva-
tures is equal to

H (t) - Ho= [az~) ( (l+2) (l-1) YZm(r, z)

- ~d (L (L+1) + (l+2) (l-1»

X Yzm(r,z) YLo(8) + 2 (dYLo(8)/d8) (dYzm(r,z)/d8» )
+ ~L I:a'\:; (l' +2) (l' -1) YZ'm(r, z) ]exp (-iwzmt)/2Ro.

z' (19)

(18)

Substituting (Al)~(A4) (see Appendix 1) and (17)-(19)
into the boundary conditions (15) and (16), we obtain for
each rn a system of linear equations for the relative ampli-
tudesa'm (ap +.aN), a"m (ap + aN)' aI;;?,and a;~';'.From
the solvability condition for this system of equations in the
zeroth order approximation in (3L we findfor the determina-
tion of the wave vector k, for a spherically symmetric nu-
cleus an equation having the same form as the one found in
Ref. 12:

g, +(0)(x) "'" jz' (x) - (3eFxA'I'/Bw (l-1) (l+2»

X(c,+j/' (x) + c,+jz(x» = o. (20)

Here and below the primes denote differentiation of the
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spherical Besse1 functions with respect to their argument
x = k,Ro,

c,"'=1- (s"') ,+ (2Fo"'+G (s"'» /3, c,"'=1-3 (s"') '+G (s"') ,
(21 )

and B(s) = 41Tr6JCis the coefficient of A 2/3 in the mass for-

mula.4 The root X/~ (A) = k'nRo of Eq, (20) practically
does not depend on A (n is the number of the root of the
equation). Thus, as A is varied from 40 to 250, the quantity
x,~ (A) for 1 = 0,2,3, and 4 changes by not more than 5%,

Retaining in the solvability condition the terms linear in(3L'

we obtain an expression for the determination of the quanti-
ty D..xi::'n (A):

I1x'~n (A) = I1k,mnRo=-~LXZn+(A) «2L+1)/4n) '/'<lOLOIlO)

X<lmLOllm) [1+ (L(L+1) c,+(3eFA"'x/Bw (l+2) (l-i»

X (j/ (x) - jz (x)/x)/x' - (1/,) £ (£+1) j, (x) Ix'

,
~
1

1

I

-(1+2L(L+1)/«l+2) (l-1»)

Xj/(x)/x)/(g,+(O) (x»),]I"~'in(A)' (22)

The excitation energy E i::'n(A) of the resonance of multipo-
larity I, with component rn, is connected with x,~ (A) and
I1x'-:;'n(A) by the relations

" ~

Ez~n(A) = Ez~(A) + I1Ei':nn (A), (23) i~
SI-,:J

'1
I

1
.~"
.~

where

E1n'" (A) =fi (vF/rO) s"'XZn'"'(A)A -"',

I1E,;n (A) = E,: (A) (l1xz;'n(A) /Xln (A».

(24)

(25)

It follows from (22)-(25) that the resonance of multipolar-
ity 1splits up in an axially symmetric deformed nucleus into
1+ 1 components. In an axially symmetric deformed nu-
cleus the components whose rn's are equal in magnitude but
oppositein signhavethesameexcitationenergy.ForBL > 0
the component with rn= 0 has the minimum energy
E I;min(A) = E I~n(A), while the component with rn = I has
the maximum energy E ';max(A) = E It.CA). The magnitude
of the splitting ofthe nth resonance of multipolarity 1is equal
to c~

I1Ezn"'(A)= E';max(A) -E';min(A). (26)

The lowest (n = 1) resonances of multipolarities 1= 2 and 3
in spherical nuclei correspond to experimentally observed
resonances, and exhaust the major portion of the model-in-
dependent energy-weighted sum rule. 12,13In Table I we give
the numerical values of the coefficientsE it (A)A ] 13,

t:..E1-::'1(A)A 1/31(32't:..EIt (A)A 1/31(32for I = 0, 2,3, and 4.
The computations were carried out with the aid of Eqs.
(20)-(26) with ro = 1.2 fm, CF = 40 MeV, F 0+ = 1, and
B(s) = 19 MeV. The excitation energies and the degrees of
exhaustion of the model-independent energy-weighted sum
rule for these parameters are in good agreement with the
experimental data reported in Refs. 12 and 13.

In the case of the isovector density oscillations the
boundary conditions at the ES of the nucleus have the form 1)
(see Ref. 15)
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(Vp(N)(r, t)n)IES=«d~p(N)(r, t)/dt)n) , (27)

ann - (r, t) IEs

= 1: a~" - (r, t) (ne~) (ne,,) IES=B-/2nro4 «~N (r, t) -~p(r, t» n).
~v

(28)

Here

n~p(N)(r, t)= (Ctif:~(N)Ylm(r,z)+~L 1.:Ct"<:'~(N)YI'm(r,z) )
I'

X ro eXP(-i(i)lmt) (29)

is the displacement of the proton (neutron) ES of the nu-
cleus from its equilibrium position, ai:.!p(NJis the amplitude
of this displacement, and B - is the isovector shear stiffness
coefficient for the surface.15It follows from the condition
(5) on the amplitudes aN and ap that the position of the
center of mass for the isovector density excitations of any
multipole order I is preserved, i.e., that

S dr r Ylm(r, z) (Pimp(r, t) + plmN(r, t) ) + S dS Ylm (r, z)

X R (8) (pP(~lmp(r, t) n) + PN(~lmN(r, t) n» = 0, (30)

and, taking account of (3)-(5), (7), (9)-(13), and (29),
we obtain the following relation between the surface-oscilla-
tion amplitudes:

(I) (I)
CtlmP =-CtlmN' (31)

For the isoscalar density oscillations of multipole orders
1=0, 2, 3, 4, ... the condition for the preservation of the
position of the center of mass is fulfilled identically (in first
order in the oscillation amplitude). The 1=1 case will be
considered in a separate paper. As in the case of the isoscalar
density oscillations, the substitution in the isovector-oscilla-
tion case of (3)-(5), (7), (13), (14), and (29) into the

boundary conditions (27) and (28) yields for each m a sys-
tem of linear equations for the amplitudes
apa,m, ap,al'm' ai:.!p, and ai~~p, From the solvability con-
dition for this system of equations in zeroth order in /3L we
find for the determination of the wave vector k, an equation
that has the same form as the one obtained in the case of a
sphericallysymmetricnucleusl5: ,-

g,-(O) (x) ""'jz' (x) - (3eFxl4B- A'h) (c.-j/' (x) +CI-jl (x» =0.
(32)

Theci~2 here are defined in (21). Let x,; (A) = k,nR() be the
nth root of Eq. (32). Retaining in the solvability condition
the terms linear in /3L, we obtain the following expression
for the determination of the quantity ~i;;'n (A) = I::1k'mnR():

I::1XI;;;"(A) =-~LXl" -(A) «2L+1)/4n) "'<ZOLOIIO><lmLOllm)

X [1+ (L (L+1) c.- (3eFxl4B- A'l,) (jz' (x) -j, (x) Ix) Ix'

- (1/.) L(L+1)j1 (x) Ix2+j,' (x) Ix)/ (g;(O) (x» '] I-"'in (A)'
(33)

The excitation energy E I-;;'n(A) of the resonance of mu 1-

tipolarity I and multipolarity component m and the magni-
tude I::1EI;; (A) of the resonance splitting are connected with
x,; (A) and ~I-;;'n (A) by the relations (23 )-( 26). The low-
est (n = 1) resonances of multipolarities I = 1 and 2 corre-
spond to experimentally observed resonances, and exhaust
the major portion of the model-independent energy-weight-
ed sum rule. 15 Figure 1 shows the dependence of
E iimax(min)(A) and I::1Eii (A) on the number of nucleons in
the nucleus for nuclei with large quadrupole deformations.
The experimental values of E i,max(min)(A) and I::1E11(A)
were taken from Refs. 25 and 26; those for /32'from Ref. 22.
The computation was carried out with the aid of Eqs. (32),
(33), and (23)-(25) for the parameters r()= 1.2 fm,
E:F=40 MeV, N=Z=A/2,Fo- =1.6, and B-=43.5
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FIG.!. Dependence on the number of
nucleons in the nucleus of: (a) and (b)

the excitation energies £ I'm;n (A) and
£ i'max (A), respectively; (c) the mag-
nitude 6.£ i, (A) of the splitting; and
(d) and (e) the widths fllm;n (A) and
fllm.x (A), respectively. The points:
X indicate the values obtained in the
zero sound + ES model; 0, the values
obtained in the first sound + ES mod-

el; .A, the values obtained in the SJ
model; and T. the values obtained in
the GT model.
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MeV. The excitation energies and the degrees of exhaustion
of the model-independent energy-weighted sum rule at these
parameter values are in good agreement with the experimen-
tal data. 15It can be seen from Fig. 1 that the E ilmax(mi")(A)
and /lE 11(A) values obtained with these same parameter
values are also in good agreement with the experimental val-
ues.

2. First sound+ES model

Let us first consider the isoscalar density excitations in
an axially symmetric deformed nucleus in the first
sound + ES approximation. In this case the tensor Ufl+"(r, t)
is diagonal, and is connected with the volume compressibili-
ty K + of the nucleusby the relation

cri:'(r, t) =I)~.(K+/9) p/ (r, t) , (34)

where p/ (r, t) is the dynamical component of the isoscalar
density in the interior of the nucleus. From the hydrodynam-
ic equations (see Appendix 2) and the boundary conditions
( 15), ( 16), and ( 17) we obtain for each m a system of equa-
tions for the amplitudes a/m (aN + ap), arm (aN + ap),
a:~, and a:~;,. As in the case of zero sound, the solvability
condition for this system furnishes in zeroth order in/3L the
equation for the determination of k/ in a spherical nucleus:

g/ (I) (x) ==/t' (x) - (K+A "'x/3B(') (l+2) (l-1) )// (x) =0,
(35)

which coincides with the equation obtained in Refs. 3,4, 10,
and 12. In first order in/3L we have for Cu:i:;'"(A) the expres-
sion

/lXI:" (A) =-~LXJn +(A) [(2LH)/4nJ'i'<lOLO IlO)(lmLO Ilm)
X[ 1- «I/.)L (L+1)jl (x)/x'+ (1+2L (LH)/ «l+2) (l-1»)

Xj/(x)/x)/(gtCO) (x»']lx-X+/n(A)' (36)

The root ofEq. (35) tor 1= 0depends weakly on the number
of nucleons in the nucleus; for example, the root changes by
not more than 5% when A is varied from 40 to 250. The
resonance excitation energy in a spherically symmetric nu-
cleus has the form

E",'" (A) =h (K"'J9MruZ)"'Xl"'"(A)A"'. (37)

For K + = 200 MeV, BCS)= 19 MeV, and '0 = 1.2 fm, the
excitation energiesand the degrees of exhaustion of the mod-
el-independent energy-weighted sum rule for the lowest re-
sonances, which make the dominant contribution to the sum
rule, are in good agreement with the experimental data for
the monopole resonance.10.12.13But for the resonances of
multipolarities 1>2 the lowest resonances that exhaust the
major portion of the model-independent energy-weighted
sum rule correspond to oscillations of the nuclear surface,
and are not observed in experiment. 12.13

Let us now consider the isovector excitations of an ax-
ially symmetric deformed nucleus in the first sound + ES
approximation. In this case the tensor u;:v(r, t) is diagonal,
and is connected with the volume isovector compressibility
K - of the nucleus by the relation
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cr~. (r, t) =1)". (K-/9) PI- (r, t),

1

(38)

wherep/- (r, t) is the dynamical component of the iso>'9ctor
density in the interior of the nucleus. From the hydrodynam-
ic equations for a two-component medium and the boundary
conditions (27) and (28) we obtain for each m a system of
equations for the amplitudes a/map, a/'map, a~~p, and
a:~~p. As in the case of zero sound, the solvability condition
for this system furnishes for the determination of the k/ in a
spherical nucleus, i.e., in zeroth order in /3L , the equation

gl-(l) (x)==j/(x)-(K-xI3B-A"') (NZIAZ)j,(x)=O, (39)

which has the same form as the one obtained in Ref. 15. In
first order in/3L we have

~XI;:" (A) =-~LX'n - (A) [ (2L+1) /4rt J"'<lOLO I10)<lmLO Ilm)

x[ 1+( - (1/2)L(L+1)j/ (x)/x'

+j/(x)/x)/(g~(I) (x»']lx-~i,,(A). (40)

The resonance excitation energy E I;;(A) in a spherical nu-
cleus is, in the first sound + ES approximation, connected
with the root x/; (A) ofEq. (39) by the relation (37). The
energy E i;;'"(A) of the resonance components and the mag-
nitude /lE I;;(A) of the splitting are connected in the first
sound + ES model with E /; (A), xi;; (A), and Cu:i;;(A)
from (39) and (40) by the same relations that connect the
corresponding quantities in the zero sound + ES system
[see Eqs. (23), (25), and (26)].

Figure 1 shows the dependence, as computed for
K - = 750 MeV, B - = 64 MeV, and '0 = 1.2 fm, of
E ilmax(min)(A) and the magnitude /lE 11(A) of the splitting
on the number of nucleons in the nucleus. For these param-
eter values the excitation energies and the degreesof exhaus-
tion of the model-independent energy-weighted sum rule are
in good agreement with the experimental data. 15 The quanti-
ties E llmax(min>(A) and /lE it (A) for these same values of
K - andB - are also in good agreement with the experimen-
tal data.

The value K - = 750 MeV is significar.t1ygreater than
the value K- = 450 MeV taken from the mass formula.4But
the magnitudes of the isovector volume compressibility and
the isovector surface shear stiffness are connected with
terms of the mass formula [(N - Z)2/A and(N - Z)2/

A 4/3,respectively] that cannot be accurately determined by
fi(ting the mass formula to the nuclear masses (see also Refs.
24,27, and 28).

It is demonstrated in Ref. 15that the first sound + ES
model unites the SJ and GT models. Thus, (39) and (40)
yield in the limit B - - 00 the corresponding expressions for
the SJ model21 (see, for example, Ref. 4). In the K - - 00

limit we obtain from (39) and (40) with the aid of (37) the
corresponding expressions for the GT model: In Fig. 1 we
show the quantities E llmax(min>(A) and 6.E 11(A) as com-
puted in the SJ and GT models. The SJ model curves for
these quantities were taken from Ref. 7, and are the results of
exact calculations carried out withK - = 450 MeV. For this
K - value the resonance energies computed in the SJ model
agree well with the experimental values in the region of
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FIG. 2. Dependence of the total width r ii (A) [formula (43) ] of the
giant isovector dipole resonances on the number of nucleons in the nu-
cleus in the zero sound + ES approximation. The points have the same
meanings as in Fig. I.

heavy nuclei.4In the GT model the energiesof the resonance
components are estimated in accordance with Okamoto's
prescription,8 and are represented in the form of an expres-
sion:

E';;-u(min) (A) = 37A -1/6Ro/Rmin(max) (Me V), (41)

whereRmax(min) is the maximum (minimum) distance from
the center of the nucleus to the ES. The numerical coefficient

in (41) has been chosen so as to obtain a good description of
the region oflight nuclei, where the model is more realistic. IS

It follows from Fig. 1 that the first sound + ES model
provides in a broad range of nuclear masses a better descrip-
tion of the excitation energies and the magnitudes of the
dipole-resonance splitting than the SJ and GT models.

The magnitudes of the isovector quadrupole resonance
splitting in the zero sound + ES and first sound + ES mod-
els differ from the magnitude of the dipole resonance split-
ting by not more than 10%.

In both the zero sound + ES and first sound + ES ap-
proximations the resonance energies E ';'n(A) depend only
weakly on the parameters Fox., K x., B (5), and B -. Thus, a
20% change in these parameters leads to not more than a
10% change in the quantity E ';'n(A). And in the zero
sound + ES model the energies of the resonance compo-
nents depend very weakly on the constant in the quasiparti-
cle interaction amplitude. For example, the variation of the
constant in the range from 0.5 to 3 leads to not more than
10% changes in the values of E ';'n(A).

Let us note that, in the zero sound + ES the first
sound + ES models, the isoscalar and isovector monopole
resonances do not split up in the approximation linear in /32'
The coupling of the monopole and quadrupole resonances
arises in the next order of perturbation theory in 132'

Notice that, for N = Z, the formulas (35)-(37) and
(39), (40), (37) can be obtained respectively from (21),
(22), (24) and (32), (24) by making the formal substitu-
tions EF-Kx. /6, Fox.-0, and s x. -lIVJ. These substitu-
tions effect a formal transition from zero to first sound.

25 SOY. J. Nucl. Phys. 44 (1). July 1986

Ill. RESONANCE WIDTHS IN THE ZERO SOUND+ES
APPROXIMATION

It is shown in Refs. 14 and 15 that the widths of the
isovector and isoscalar resonances in spherical nuclei have,
in the zero sound + ES approximation, the form3)

fin '"(A) =a «Eln '"(A)) 2+ (2nT) 2). (42)

Here E i; (A) is the resonance excitation energy (24), T is
the nuclear temperature,

a=npeF/ (tOn2TJo),

and 1/0is the parameter in the expression 1/ = 1/0/T2 for the
quasiparticle viscosity of the nucleus. For 1/0= 1.84X 10-21
MeY-sec/fm and a = 0.02 Mey-I the widths computed
with the aid of (42) in the limit 21TT4,E'n (A) agree well
with the experimental values for the wIdths of the isovector
dipole and isoscalar quadrupole resonances in spherical nu-
clei.14.15

In the case of deformed nuclei the resonance splits, and
it is broader. 1-4,25.26,32,34In this case the width can be esti-
mated from the formula

fln"'(A)=(1I2)(r/;:=max (A) + r/;:=min(A» +t.Eln"'(A), (43)

where

r/;:=maX(min)(A) =a«E/;;"ax(min) (A»2 + (21TT)2). (44)

[It is shown in Ref. 15 that the width of the zero-sound
density excitation is given by an expression of the form (42)
and does not depend on the functions A ,x.(k, z), (7). There-
fore, the expressions for the widths rl;maX(min)(A) have the
same form as (42) or (44). We can find the width of the
resonance component with energy E /;'n(A) by substituting
E /;'n(A) for E i; (A) in (42).]

In Fig. 1 the widths r Ilmax(min)(A) obtained with the
aid of (44) in the limit 21TT4,E i1(A) are compared with the
experimental values obtained by Gurevich et 01.25.26in the
region of deformed nuclei. The widths were computed with
the same parameters that were used in the computation of
theE /-;;'n(A), and the/32values were taken from Ref. 22. The
r ilmax(A) and r tlmin(A) values are in good agreement with
the experimental data.

Figure2 showsthe total widths r 11(A) for the isovec-
tor dipole resonance, as computed with the aid of (43) in the
limit 21TT4,E i1(A), for a broad range of nuclear masses.
The experimental widths were taken from Refs. 25, 26, and
34; the quadrupole nuclear deformation parameter values
for nuclei with A < 150 were taken from Ref. 23; those for
nuclei with A > 150,from Ref. 22. The tables in Refs. 22 and
23 do not give the values of the quadrupole deformation /32
for all the nuclei for which experimental values for the di-
pole-resonance widths are reported in Refs. 25, 26, and 34.
In those cases in which no values are given for the/32param-
eterin Refs. 22 and 23, we set/32= 0 in the calculations. The
computed total widths are in good agreement with the ex-
perimental values for the nuclei with A> 150;for the nuclei
with A < 150, the agreement is not so good. The disagree-
ment in the A < 150region is due to the insufficientaccuracy
of the /32values and, possibly, the influence of other effects.
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FIG, 3, Dependence of the total width rz"'i (A) of the giant isoscalar qua-
drupole resonances on the number of nucleons in the nucleus in the zero
sound + ES approximation, The points: 0 indicate experimental values
taken from Ref. I; e, experimental values taken from Ref. 3; and x,
theoretical values obtained with the aid offormula (43).

Figure 3shows the total widths r it (A) for the isoscalar
quadrupole resonance, as computed with the aid of (43) in
the limit E I;;(A) > 211'T,for medium and heavy nuclei. The
experimental quadrupole-resonance widths were taken from
Refs. I and 3; the values of the parameter /32'from Refs. 22
and 23 (in the case of those nuclei for which no values are
given for /32 in the tables in Refs. 22 and 23, we set this
parameter equal to zero in the calculations). The computed
total widths are in satisfactory agreement with the experi-
mental values.

In conclusion the author expresses his profound grati-
tude to V. M. Strutinskil for numerous and fruitful discus-
sions. The author also thanks A. V. Ignatyuk, A. G. Magner,
V. G. Neudachin, Yu. F. Smirnov, B. A. Tulupov, M. G.
Vrin, and R. A. Eramzhyan for a discussion of the paper and
useful comments.

APPENDIX 1

Here we present the radial and tangential components
of the mean nucleon velocity and stress tensor computed
with the aid of Eqs. (4), (5), (7), (13), and (14). These
components are required for the computation of the isosca-
lar-resonance excitation energies in the zero sound + ES ap-
proximation. The expressions for vp- (r, t) = (VN(r, t)
- vp (r, t» p and O'p-v(r, t) can be obtained from the expres-

sions for vp+(r, t) and O'p~(r, t) by making the substitutions
s+ -s-, F 0+-F 0-' and ct - cv, and multiplying the
expressionforvp-(r, t) by two:

Vlr+(r,t)=CV+(pl's+/pMi) [al",jz'(k,mr)Ylm(r,z)

+~LL,a"mj,.'(klmr)YI'm(r,Z) ]exp (-ioo,mt) ,
I' '

(AI)

V'a + (r, t) =Cv + (PFS+ /pM i) [a'm (j I (x)/x) (dY"n (r, z) / d8}

+ ~L2:a"m(j" (X)/x) (dY"m(r,z)/d8) ]I x~h,n.,'exp(-ioo,mt),"

(A2)
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a'rr (r, t) =cv + (PF2/2M) [a/m(C2 +i,// (x) +c, +jl (x» Y1m(r, z)

+~L .L,a"m(Cz+j,,//(x)
I'

+C,+j,'(X»Y"m(r,z) JI exp(-iw/mt), CA3)
%=hlmT

a,TO (r, t) =Cv + (PF2/2M)

X [almA ((j,' (x) -j, (x)/x)/x) (dY,m (r, z)/d8)

+~L.Ea"mil' «j,,' (x)-i,' (x)/x)/x)
I'

X(dY"m (r, z) /d8) ]I exp (-iWlmt).
.-hlm'

(A4)

APPENDIX2

The hydrodynamic equations for a two-component sys-
tem have the form

app(N)(r, t) .
- + PP(N)dlVglad (XP(N)(r, t» =0,at

(AS)

a glad (XP(N)(r, t» + Kpp glad (PP(x)(r, t»
PP(N) 'at girl

KpN
+-grad(PN(p)(r,t»=O, (A6)gM

wherepp(N) (r, t) is the dynamical component of the corre-
sponding density, XP(N) (r, t) is the velocity potential, and
the PP(N) are defined above. The compressibilities Kpp and
KpN are defined in such a way that K + = Kpp + KPN is
the volume compressibility of the nucleus, while
K - = Kpp - KPN is the isovector volume compressibility of
the nucleus. The periodic solutions (a>is the frequency) to
these equations have the form

ppcx,(r, t)=pa(t)j,(kr) Y'm(r. z),
- a
XP(N)(r, t) = (1/kzpP(N» at PP(N)(r, t),

(dz/dtZ)a.(t) +wza (t) =0.

(A7)

(A8)

(A9)

IILet us note that the connection between the isovector density oscillations
in the interior of the nucleus and the displacement of the proton surface
relative to the neutron surface is considered in Refs- 21 and 24. But the

boundary conditions proposed in these papers are different from (27)
and (28).

2'Let us note here some error, in the model proposed in Ref. 21. In that
model a boundary condition is used which presupposes the absence of a
shift of the proton surface relative to the neutron surface (Le., assumes
thatD - - 00).4,15,24But in Ref. 21 the proton and neutron surfaces are
shifted with respect to each other, which is inconsistent with the use of
the boundary condition for the SJ model.

31The collision mechanism, considered in Refs. 14 and 15, ofthe formation
of the giant-resonance widths assumes that the collision of a quasiparti-
c1e-quasihole pair results in the production of new quasiparticle-quasi-
hole pairs (for greater details, see §9 of Chap, 1 in Ref. 19). This mecha-
nism of the formation of the giant-resonance widths corresponds to the
semiclassical approximation for detailed microscopic calculations. 2.29-33
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