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Abstract

Simple analytic expressions are derived for the energies of vibrational-rotational bands both
of positive and negative parity in soft nuclei with nonvanishing equilibrium deformations 39, /3,
..., B%. Expressions for the reduced probabilities of E1, E2 and E3 transitions are derived. The
calculated values of energies are in good agreement with experimental data for 1% Ba, '“Ce,
146,148,150 Nd, lSle, ISOSm, 220,222 RI’!, 217,219,221 FI‘, 218,219,220,221,222,223,224,225,226,227,228 Ra, 219,223,225,227 Ac
and 220221,222,223,224.225, 22622829 T jsotopes. The correlation between experimental and theoretical
values of the branching ratio B(E1,I — I — 1)/B(E2,I — I — 2) for some isotopes is sat-
isfactory. The calculated values of the ratios B(El,{ — I —1)/B(El,1 — 0), B(E2,I —
I —2)/B(E2,2 — 0) and B(E3,I — I —3)/B(E3,3 — 0) are in satisfactory agreement with
experimental data available for *Ra.

1. Introduction

Intensive experimental and theoretical studies of different phenomena in nuclei with
equilibrium quadrupole and octupole deformations have been continuing during the
last ten years [1-42]. The microscopic origin of equilibrium octupole deformation is
connected with a strong coupling between single-particle states, which differ by 4/ =
3 and/or 4j = 3 [3]. Two rotational bands of opposite parity have been observed in
nuclei with quadrupole (3;) and octupole (B33) deformations [1,2,13-43]. Strong dipole
transitions occur between rotational levels with opposite parity due to a polarization
electric dipole moment [6—12] in these nuclei. This dipole moment is associated with
electrostatic redistribution of protons relative to neutrons in the nuclear volume and on
its surface [8-12]. Detailed discussions of the polarization electric dipole moment are
presented in Refs. [1,2,4,6-12].
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As a rule nuclei, having both equilibrium quadrupole and octupole deformations,
have also equilibrium deformations of multipolarity A > 4 [1,4,6,7]. The quadrupole
and octupole deformations in these nuclei have close values and as a rule largest val-
ues [1,4,6,7].

These nuclei with nonzero deformations of odd multipolarities have reflection asym-
metry, which is restored due to the tunneling transitions between shape states with
opposite values of odd multipolarity deformations [8,11,12,44]. These nuclei have two
symmetric minima of the potential energy, corresponding to opposite values of odd
equilibrium deformations /9. This leads to a double degeneracy of the levels, which is
removed by tunneling transitions under potential barrier separating potential wells with
opposite values of the odd deformation parameters. Due to the tunneling transitions in
nuclei with deformations of odd multipolarities there are two opposite-parity rotational
bands with equal K.

In previous studies a model of collective excitations of soft deformed even-even
[13,14] and odd [15] nuclei having both quadrupole and octupole deformations is
constructed. In these papers simple expressions for the energy levels of even and odd
bands and for the reduced probabilities of electric dipole and quadrupole transitions are
obtained. The calculations of E3 transitions are presented in Ref. [16].

The model proposed in Refs. [13-15] is a generalization of the Davydov-Chaban
[45,46] model, which describes vibrational-rotational spectra of soft even-even nuclei
only with a quadrupole deformation, on the case of nuclei with both quadrupole and
octupole deformations. The calculations of the reduced probabilities for electromagnetic
transitions have been done [13-16] in analogy with calculations [46,47] for nuclei with
pure 3, deformation.

One should note also papers [48-50] dealt with the vibrational-rotational spectra of
soft even—-even nuclei, having only octupole deformation, and paper [51] devoted to
calculations of rotational bands of a rigid quadrupole rotor both of A and By, B;, B3
symmetry with respect to the group D,.

Now we extend our model to the case of nuclei with 3;, Bs, ..., By deformations.
As we noted in Ref. [14] the deformations of higher multipolarities give significant
contributions to reduced probabilities of dipole transitions in the soft-rotator model.

A simple expression for energies of the even-even nuclei with 8;, B3, ..., By
deformations is derived in Section 2. An extension of these results to the case of
odd nuclei is presented in Section 3. Limiting cases of rigid and very soft nuclei
are considered in Section 4. Section 5 is devoted to calculations of electromagnetic
transitions in such nuclei. In Section 6 the discussion of results and comparison with
experimental data are presented.

2. Energy levels of even—even nuclei

The distance between the center of the deformed nucleus and its surface in the
direction of the polar angles ¢, ¢ in the laboratory frame x, y, z is given by the
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expression [44,46]

R(9,¢) =Ro |1+ ant;,(d,0) ], (D
Ap

where Ro is the radius and a,, are the parameters of nuclear deformations. Let us
introduce an intrinsic coordinate system with the origin at the center of mass and with
axes &, n, { directed along the principal axes of inertia of the nucleus, whose orientation
relative to the x-, y-, z-axes is defined by the eulerian angles 6 = {6, 6,, 63}

Next, we assume that the nuclei are rigid with respect to nonaxial deformations of
the nuclear surface. In other words, we consider only axially symmetric deformations.
Then

w=BrDY,(0), (2)

where 8, are the deformation parameters in the intrinsic coordinate system, which vary
in the interval —oc < B, < oo for odd values of A and 0 < ) < oo for even ones,
D(’)\#(G) is the Wigner function.

In order to dismiss the spurious shift of the center of mass of the nucleus with
varying deformation of odd multipolarity we must introduce the dipole deformation by
the relation [8,11,12]

A+
\/7Z ST DT P )

Note that B is an order of magnitude smaller than 8, (A > 2) deformations [11,44]
and therefore may be neglected.

We shall consider only axially symmetric nuclei for which the hamiltonian can be
shown to be

N h2
Z 2B, BMBAﬁ‘éﬂA SN A+ 1)B B2

+Ww({Br}), (4)

where B, are the mass parameters, T is the nuclear spin operator in units of A, and
Vo({Ba}) is the potential energy, {8} = {B2.B3....,Bn}. For more simple cases of
B> and B3 deformations the hamiltonian is provided by Refs. [45-50].

The solution of the Schrodinger equation

HY1({B,}.0) = E/¥;({B,},0) (5)
is
VE{BLYLO) = (BB Bw) Py ({B]) | IMOL), (6)

where the function [/MO0+) describes the rotation of an axially symmetric nucleus with
spin projections M onto the axis z and K = 0 onto the nuclear symmetry axis . The
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function with plus sign transforms in accordance with the irreducible representation A of
the group D,, whereas the function with the minus sign transforms according to the irre-
ducible representation B;. In the general case these functions have the form [44,46,51]

21 +1
[IMK+) = | /m (Dlys(8) % (=1)' D13y (8)) (7)

where K =0, 2, 4, ... and §;; is the Kronecker symbol. We restrict ourselves by the
states with K =0, for which [IM0+) # O when I =0, 2, 4, ... and |IM0O-) # 0 when
I=1,3,5, ... The functions ¢+ ({B.}) and ¢~ ({B.}) are, respectively, symmetric
and antisymmetric with respect to reflection in the plane £, n, which is perpendicular
to the symmetry axis ¢, i.e. & ({8}) = £¢* ({(~1)*B,}). Therefore, the functions
Yt ({Br}) and ¥~ ({Br}) describe states of positive and negative parity, respectively.
The form (6) of the wave function for even—even nuclei is a result of equivalence of
reflection B, — (—1)2B, to rotation around the axis perpendicular to the symmetry
axis { (see also Ref. [44]).
From (4)-(6) we obtain the equation for ://Ii({,B,\}):

R 9° RI(I+1)
Y o +VUBY) —Er| ¢ ({Ba}) =0, (8)
; 2B)0B3 T SN MA+ D)BB l
where
Al
VUBD =%{BD +30 D 50 (9
=2 AB}\
Introducing reduced deformation parameters
Bi=(B\/B)'/B, (10)
with
B=(B2+By+---+By)/(N-1), (11)
we rewrite Eq. (8) in more symmetric form
h? R+ 1) ~ .
gt —— —— = VUBD — B [E (B =0, (12)
BB\, AA+1) (Ba/B)
where 4 is the laplacian operator,
2 2 2
9 9 J (13)

=—+ -+ 4+ —=,
B aB3 By
,5 is the length of the vector {Ez, ,Eg, e, EN} in (N — 1)-dimensional space,

~ ~, ~ 1/
B=B+B++m]". (14)
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Now we introduce in this space the spherical coordinates 9, %7, 93,...,9n_2 by
B2=Bsindy_s---sind sin 9,
B3=Bsindy_z---sin cos D,
Br-1=Bsindy_ycosIn_3,
,§N=,§cosﬂN_2. (15)
They vary in the following limits:
0<B<o0, 0< <2m,
0< 6, <, Kk #+ 1. (16)
Then (12) takes the form

{ hz( I 3 2y, 1A>+ R+ 1)

2BA\BN-298"  aB P 6BF({8.}) B b~ E
Xyt ({Br}) =0, (17)
where 4y is the angular part of the laplacian operator [55]
1 3 N—3 d 1 9*
Ag = 19 _ + .-+ —,
7 i Sy_2 00N_2 S N 25191\/—2 sin Oy_p - - -sin® &, 99}
(18)
and
N ~\2
F{SDH =£D> AA+1) (%ﬁ) : (19)
A=2

The factor F({J.}) varies in the limits 1 € F < éN(N + 1). The value F =1
corresponds to pure quadrupole deformation of the nucleus, and F = éN (N +1) to the
pure Sy one.

The normalization constraint for the wave function modifies as

/|¢,*<|W})|2 4B dBs By =

BoB:--. 1/2 - 2 -
(%) / WEAB 0| B2 aBda=1, (20)

d2 =sin" 3 Iy_sdOn_s - -sind, dF, d.

The potential energy has two minima with coordinates ,32 and ,8;0 = (-1 ){32. They
correspond to nuclear shapes, which coincide as a result of the reflection in the plane
£, m, corresponding to the transformation

B A% = B {00 00 =90, Oh. =7 — 9%, (21)
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where n is an integer.
Now we assume that the potential energy has the form

V(B {De}) = Va(B) + B Vs ({8.}), (22)

which enables us to factorize the wave function:

WEB A = B V2gE (B) xE ({9, ]). (23)

A real potential V(8, {¥«}) may be a much more complicated function, but such
a representation greatly simplifies further calculations. A similar function V(8,y) is
adopted in a generalized description of nuclei which have only quadrupole deformation,
given in §14 of Ref. [46]. Davydov’s potential V(8,y) coincides with (22), when
B — Band y — {9,}.

The function y* ({d,}) obeys the equation

K2 BRI +1
{ IR D |y 9. - 5] xE () =0. (24)

2B T 6BF({0.))

Here the potential energy Vy can be expanded in terms of displacements from one
equilibrium position (9, — 9°) or another (&, — #9). The smallness of these dis-
placements allows us to replace in (24) the function F({d,}) by its equilibrium value
Fo = F({92}) and the trigonometric functions sin 9, or cos &, by sin® or cos9?
in the kinetic-energy operator. It can be easily shown that the relative error then is of

the order 1/ (1 — 9¢)? < 1, where the overbar means the quantum-mechanical average.
As is usually done in molecular and solid-state physics [53], the following step will
be the introduction of normal coordinates instead of ¢ — ¥, which assures splitting
of Eq. (24) into N — 2 uncoupled oscillator equations with vibration frequencies .
Then the energy

R+ 1)
Erzgx 2 T 7 25
i% v + 6B.7:() ( )
N=2
£ =) hol® (vi+ 1) F 14,
i=
where the “angular” phonon numbers »; =0, 1,2, 3, ... v = {v:}, A&, is the splitting

of the vth level. Here £ and &, are yet doubly degenerate. Taking into account the
tunneling under the potential barrier separated nuclear reflection-symmetry shapes leads
to their splitting. Always £ < £ [52]. The functions xj ({9.}) and x; ({#.})
are, respectively, symmetric and antisymmetric combinations of the products of wave
functions for uncoupled oscillators. We are not interested in their exact form.

Then for the function qﬁf ( ,E) one has the following equation:

2 92

35 T VB —Ei| ¢ (B) =0 (26)
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with the effective potential energy

Wi, (B) = Win(B) + hzg;;%zl) - 5"}' “, (27)
where & = (& + 3&;) and
Wi (8) = Va(B) + (N_zs);gz_“hz +%. (28)
Choosing the potential energy Wi5(8)) in the form
s C (B i
Woo(B) = = (73: - B) ; (29)

this function W ( [NS) is only alternative to the parabolic curve taken in the original version
of the Davydov—-Chaban model. Since the amplitude of the nuclear vibrations is small,
we can come to the harmonic approximation expanding the function (29) in powers of
E - EO. Then introducing the notations

Boo’ ©= /BC’ Bo’
Ef =ho(Kf-u™, w=(C/B)", (30)
we transform (26) to
AL o +| 4+, 7
T T TP — 2K, | ¢5.(B) =0, (31)
where
I(I+1)
Afb=at 4~~~ 32
Iv v + 3]_-0 ( )
and
+ _
g = e T (33)
M he Bg,

Note, that A~ > A* and the sum 4} + 4, =2u~* is always positive since the softness
coefficient u > 0.
The solution of Eq. (31), which satisfies the normalization condition

/(¢ﬁ<ﬁ>>2dﬁ=1 (34)
0

and the boundary conditions ¢(0) = ¢(oc) =0, is given by

~ 2I'(n+ 1) i+ £y
+ = /- SEU) gy (L1 2) psEUm=1/2¢ 2y (35
o (B) \/Bogf(n +sE(Iv) + %)p p(=27) L, @)
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where I'(z) is the gamma function, £ (x) is the Laguerre polynomial, n =0, 1, 2, 3,
. and

sE (1) = 4 [1+V/TH 4% (36)

For energies one gets the expression

Ei

nly

=hw(2n+ 1+ sE(v) — p7?). (37)

Taking the energy of the ground state of the nucleus to be zero, one has

1 ad+n 1
R 1 L MULD L
Etr = EX Eooo_h,cu[2n 2\/1+44y + 7 SV 440} (38)

So, there are rotational bands, built on the vibrational states with a different number
of “radial” phonons » and “angular” phonons » = {¥,¥2,v3,...,vN_2}. The parameters
AF depend only on », but not on . For the main rotational bands of positive parity with
sequence of spins I” = 0%,2%,4%,... and of negative parity with I" =1-,37,5~,...
the quantum numbers n = v = 0. Strictly speaking, they are vibrational-rotational
bands, since when the softness parameter u # 0, the vibrational wave function ¢(,§)
essentially depends upon the rotation, i.e. on spin I (see also Ref. [46]). For n # 0 in
(38) we need four fitting parameters @, 4% and F,. But for the bands with n = 0 the
situation simplifies by renormalization of frequency:

- 1

S @ = 39

w AR (39)
Making use also of the new notation

= 3Fo(1 + 44%), (40)

we rewrite Eq. (38) for n =0 as

E§:=ha[wd#+-u1+-n-—vG§}. (41)

So, here we have only three fitting parameters @ and d for both vibrational-rotational
bands in analogy with our previous works [13-16].

3. Energy levels of odd nuclei

An odd nucleus can be treated as an even-even core plus an unpaired nucleon
[15,44,46]. We again demand the rigid axial symmetry of the nucleus and direct axis {
along the symmetry axis. The hamiltonian of such an odd nucleus is given by

~2
iila33+ I -1
28, B 9B:" of SV, A(A+ 1) BB

+ Heor + W{BA}), (42)
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where the operator ﬁcO, defines the Coriolis interaction of the unpaired nucleon with
nuclear rotation:

_ R +1)
YA AA+ BB

Heo = (43)

Here 7 and J are, respectively, the nuclear and unpaired nucleon spin operators in units
of A,

~

Iy=Ig+il,,  Jy=je+if,. (44)
The solution of the Schrodinger equation (5) with this hamiltonian has the form

VE{Br},0) = (B - Bn) " ({Be}) [ IMKKE). (45)

The functions |[/IMKK+), which describe now the rotation of the nucleus with spin
projection K on the symmetry axis £, are given by [44]

21 + 1
IMKK) =225 (D 99k = (=) ¥DL 1, (0)9_x) (46)

where the wave function ¢, describes the unpaired nucleon with the angular momentum
projection K on the symmetry axis {. The total nuclear spin takes the values I = K,
K+1, K+2,... for levels of both parities. We assume that ¢k is not affected by the
rotation.

The functions * ({}) describe the vibration of the even-even core. For transitions
between two mirror nuclear shapes, i.e. as 8y — (—1)*8,, this function ¥+ ({8,}) —
4% ({(—=1)*B,}). The functions ¥* ({B8,}) describe the even-even core of positive
(¢*) or negative (™) parity. Then the complete parity of the nucleus 7 equals the
product of this core parity and the parity of an unpaired nucleon state ¢x. Therefore,
the superscript + or — of ¢ stands only for the core parity and may differ from the
parity 7 of the odd nucleus. Due to splitting always E}, < E,, , but the parity of the
ground rotational band of odd nuclei can be both positive and negative.

For the functions ¢/,i ({B.}) we again obtain Egs. (12), (18) with I(/+1) replaced
by

FULK +) =11+ 1) = K> a(-1)""2 (1 + Hsk, 1), (47)

where a = (@k|j.|@_k) is the decoupling parameter, 8(K,K’) = 1 for K = K’ and
8(K, K'Yy =0 for K + K'.

Using spherical coordinates (15) and the potential energy (22), we again come to
the same formulae (23)-(37) for the wave functions and energies, where f(1,K,+)
is substituted for 7(I + 1). The energies of excited states relative to the ground-state
energy with phonon numbers n = » =0, spin K and parity 7y are now:

Eniry = By, — Egxmo

nimy nlmy
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4f(1LK, £ 4f(K,K,
2n+§\/1+445+£——l—%\ﬁ+443+—f(—il

=hw

3F 3F0
(48)
For the bands with phonon number n = 0 this expression simplifies:
Eoi,:y=h25[ dVi+f(1,K,i)~\/do++f(K,K,+)}v (49)

4. Limiting cases

It is useful to consider the limiting case of a rigid rotator (u = 0). When g — 0, the
frequency w — oo, but their product remains constant:

C h 1 h?
hop? =hy| = —=—=— = —. (50)
B /BC ﬁg B,Bg
Then Eq. (41) for even-even nuclei transforms to
Egm=AI(I+1), (51)
Ego=AI(I+1) + AE, (52)
where the rotor constant
hZ f2
A= - = ! — (53)
6BF0fB; D pn AA+ DBA(BY)
and the energy shift for the negative-parity rotational band
Y
ap=5 5 (54)
Bo

Here AE depends both on the splitting of energies &, — &, which correspond to -
motion, and on the total nuclear deformation EU. For the rigid odd nuclei in (51), (52)
we must only replace I(/+1) by f(I, K, F). In the general case of x > 0 the spectrum
EOi,B may essentially deviate from the oversimplified law (51), (52).

For very soft nuclei or high spins

E o B dg: _ :i:)
E0,0~hw< 0+ + 5 JaE ). (55)

The energy of the rotational level for a soft nucleus with high spin is proportional to
v I(I+1) in contrast to /({ + 1) for the rigid one.
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S. Electric dipole, quadrupole and octupole transitions in even—~even and odd
nuclei

The reduced probability of the electric transition of multipolarity L from the state
with spin ; to the state with spin /; is given by the expression [44]

1 2
B(EL,I; — It) = T Z ‘(l]fﬁf({m},H)IM,L(EL)|1I’,%({,BA},9)) . (56)
! MiMu

The electric multipole operator has the form

VA
Mu(BL) = e rFYin (0, 1), (57)

i=1

where e is the electric charge of the proton and r;, 8;, ¢; are the spherical coordinates
of the ith proton in the laboratory coordinate system.

For EL transitions of multipolarity L (2 < L < N) in an axially symmetric nucleus
we have

2L B
Mu(EL) = o Qo(L)BgDO,,,(G), (58)

where

Qo(L) = (59)

3
- 7 RL 0
JOLT Do RPL
is the L-pole moment of the static nucleus.

The operator of electric dipole transitions is connected with the polarized electric
dipole moment (PEDM) [8-12] Dy by

N—1
3 ELZ Y arBaBari

Mu(E1) =4/ -—Dg ="~ D;,.(6), (60)
4 N BB,
where
aAzlz(/\—])(/\+l)(8A+9) (61)

524+ 1)32(2A+3)32

The value of the PEDM depends on the rearrangement of protons relative to neutrons
both in the volume and on the surface. When the proton and neutron distributions in the
nucleus have the same angular dependence, the PEDM is [11]

AZE (1 15 V'R o
Dy = o <7+ W) ; arBaBii1- (62)
Here J and Q are, respectively, coefficients associated with the volume and surface
symmetry energy of the nucleus. Detailed discussions of different approaches to the
PEDM can be found in Ref. [12].
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Using our notation, we rewrite the electric L-pole operators in the form

My(EL) = \/EL—HQo(L) LaoNDh@.  2<LLN (63)
and
My(E1) = \/‘ D0~ Gi({9}) Din(0). (64)
where
Gi({9h) = 53//50 Az2,
Gi({9}) = (Ng_%)l)‘?’é;*ﬁ“‘/?z . (65)
a2 a8/ (ﬁ“)

Below we shall obtain an expression for the reduced probabilities of electric tran-
sitions in even-even nuclei. Calculating those in odd nuclei we can neglect the small
contribution from the unpaired nucleon [15,46], then it leads to coincidence of the
formulae for even-even and odd nuclei.

For the reduced probabilities of EL transitions between levels |n;50) and |n;I{0), using
functions (6), (7), (23) and (35), we find the expressions

B(EL,I; — Iy) = B,(EL, I; — ) S*(EL, [; — If)Gy. (66)
Here
L+ 1
B.(EL, I — If) = QO(L){I LO0|I;0)?, 2<L<N, (67)
B(EVL, L= I) = %Dg(moouf())z, L=1 (68)

are the reduced probabilities of EL transitions in the rigid axially symmetric rotor, and
the factors

S(EL. 1 — Ir) = /dﬂ¢flo(ﬁ)go¢mm(ﬁ), 2<LEN, (69)
o0 ~\ 2
SCELL I — Ip) = / B bnro(B) (%) uio(B) (70)

0

are due to deformational E oscillations of the nucleus (see also Refs. [14-16,44,45,551);

QL=/dﬂ)(o({ﬁx})QL({ﬂ})Xo({l?x}), (71)

(I;L00J150) is a Clebsch-Gordan coefficient.
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In the case of transitions between levels |nf;0) and |0I0) the factor S(EL,f; — Ir)
is (see also Refs. [14-16,44,45,551) i

F(14+5si+s)) T (n+L(si—s5e— 1))

S(EL,I; > If)=p , (72)
Vi (s 4+ 3 T (n s+ D (3= 5= 1)
L>2,
31, 1, Lig o 1) —
SELL — 1) = & FE+3si+s)) M (n+3(si—sg—1)—1) ’ (73)

\/n!F (ss+ )T (n+si+ DI (GGsi—s0) —1)

where I'(x) is the gamma function, s; = s(;0) and s = s(/0). Here for the sake of
simplicity we omit the parities of initial and final states.
While the reduced probabilities of transitions depend on the constant Gy, the ratio

B(EL,I —»I+1L)
B(EL,0 — L)
_By(EL,I —»1+L)SYELI—1+L)
"~ BJEL,0—L) S2(EL,0— L)
_ ({ILOO|(J + L)O) S(EL,I — I+ L)\’
- ( (0LOO|LO) S(EL,0 — L) )

R(IL) =

(74)

does not contain it at all. This ratio has the factor

S(EL,I —I+1L)
S(EL,0 — L)

connected with stretching of the nucleus due to rotation.
Within the main bands (r = » = Q) there were measured also in a variety of
nuclei [1,2,17-27,29-40] the branching ratios

B(El,I —-1-1)

B(E2,1 —1-2) (75)

W(I) =

for which one finds

S(ELI —1-1) G\’
S(E2,1 = 1-2)G,

8(21 — 1 Do \>/ S(E1,I —1—1 2
-8 )( 0)(( )g,z). (76)

W(I)=W,(I) (

T5(1—1) \Qp(2) uS(E2,1 —1-2)

This ratio depends upon an additional parameter Gj» = uG,/G,. The absolute values of
the parameter G, can be between O and 1, see also Refs. [14,15].
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Table 1
Fitting parameters of even~even nuclei. N indicates the number of the figure containing the
level scheme for these nuclei

N Nucleus hw [keV) dar dy
1 44, 275.7 17.58 36.67
2 14684 2404 9.516 28.63
3 16 Ce 259.3 4.955 17.33
4 146Nd 3222 1.339 6.640
5 148Nd 263.1 3.165 13.87
6 150Nd 3125 65.76 1103
7 1508m 319.0 12.13 26.23
8 20Rq 118.8 0.053 26.41
9 22Rp 113.0 0.562 32.02
10 28Ra 203.9 0.889 5.561
11 120Ra 198.1 20.84 22.63
12 22Ra 94.01 2.854 15.20
13 24Ra 182.8 46.70 56.08
14 226Rq 210.3 101.1 1153
15 228Ra 133.4 29.71 78.25
16 201h 207.5 0.879 0.879
17 221y 241.0 42.50 50.05
18 24Th 236.3 77.69 86.27
19 226Th 249.6 129.3 141.4
20 28Th 2015 98.83 125.8

6. Comparison with experimental data

Applying Egs. (41), (49) for numerical calculations of the energies, we use the
fitting parameters d* and d~ for positive- and negative-parity main rotational bands,
respectively. Furthermore, the parameter fiw is the same for both bands and the additional
decoupling parameter a is used in the case of odd nuclei with K = % We have been
trying to reproduce the positions of all known experimental energies by means of the
least-squares method. In this way the sum of absolute deviations between calculated
and experimental energies for each level has been minimized in contrast to our previous
works [ 13-16], where we looked for the minimum of the sum of relative deviations of
these data. These numerical results are compared with experimental data for a number
of even-even and odd isotopes of Ba, Ce, Nd, Pm, Sm, Rn, Fr, Ra, Ac and Th in
Figs. 1-37. Here we analyze practically the full set of nuclei having equilibrium octupole
deformation. In previous works [13-16] we considered only isotopes of Ra, Th and
Ac and took into account only quadrupole and octupole deformations. Tables 1 and 2
contain the values of fitting parameters hw, d* and a for even-even and odd nuclei
correspondingly. Note that such states really have a rotational nature, which is based
on the following well-known facts. The states of the same parity are related by strong
E2 transitions and those of the bands with opposite parity by E1 cross-band transitions.
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Table 2
Fitting parameters of odd nuclei. N indicates the number of the figure containing the level
scheme for these nuclei

N Nucleus hw [keV] dJ dy a

21 151pm 268.2 99.82 103.0 -
22 27Ey 217.1 21.12 21.42 -
23 219g¢ 194.4 912.0 975.6 9.24
24 2ipr 70.39 34.16 54.41 4.41
25 219Ra 254.0 82.78 85.86 2.37
26 2IRa 89.60 25.66 39.01 -
27 23Ra 271.4 526.7 536.0 -
28 25Ra 140.8 138.9 143.6 1.6
29 227Ra 30.71 3.349 22.92 -
30 29Ac 198.4 5913 6.891 0.5
31 D Ac 230.9 425.6 438.6 -

32 DA 57.07 14.06 19.76 -
33 2 ac 74.30 26.42 27.02 -
34 2lTh 255.8 78.12 78.13 -
35 223Th 315.1 364.1 368.7 -
36 25Tp 425.7 9499 951.1 -
37 29T 259.8 4443 532.5 -

All this led experimentators to a derivation of schemes for rotational bands, which have
been used by us, see Figs. 1-37. Only for the isotope 2!°Ra we treat two experimentally
observed bands as a single one (this case to be discussed in Subsection 5.3). Note that
the energy of some levels of rotational bands have not been determined in experiment
for several isotopes. In these cases we predict the position of absent levels.

6.1. Energy-level schemes of middle even—even nuclei

First, we discuss even—even middle nuclei Ba, Ce, Nd, Sm, see Figs. 1-7. In these
nuclei we can see two rotational bands of opposite parity. As a rule the first 2% states in
these nuclei have the energy 200-300 keV and the energies of the 1~ states are near to
550 keV. The simple expression (41) describes well both rotational bands in all isotopes
of Ba, Ce, Nd, Sm. Note that the largest number of levels is measured for '°Sm [35]
in this group of nuclei. The comparison of the experimental and theoretical levels for
'50Sm is presented in Fig. 7. We can see an excellent agreement of experimental and
theoretical level energies of the positive-parity band. However, we should note the bad
correlation of these data in the case of close 1~ and 3~ states provided by Figs. 1, 2, 6.
This tendency takes place also for heavy even-even nuclei (see, for example, Figs. 8,
9, 18, 19). We are predicting the position of the 1~ states for the isotopes *6Ce, 4Nd,
148Nd and '*0Sm, for which the corresponding experimental observations are still absent.

The fitting parameters fiw and dét have a small range of variation for isotopes of
144,146, 146Ce, 146.148N(, 159§m (see Table 1). The fluctuations of the parameters /i
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Fig. 1. Experimental [34) and calculated energy levels of 144Ba in (keV). The position of 1~

and dF are connected with variation of deformation, momentum of inertia and shape
softness in these isotopes. We stress here that the softness variation in these isotopes is
small, because the parameters d(:)t are proportional with u~*. In this case variation of
the softness w is many times smaller than variation of dg‘ given in Table 1. Therefore,
all these nuclei have close values of the shape softness.

The parameters dg: for °Nd have larger values than in all other nuclei from this
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Fig. 2. Experimental [34] and calculated energy levels of 46Ba in (keV).




V.Yu. Denisov, A.Ya. Dzyublik/Nuclear Physics A 589 (1995) 17-57

146,,
Cale.  Exp.

2353 10+

1042203
gt 1697 DS g
g+ 1200 172 g
4+ 118 669 4+
o+ 281 959 "+

ot

Calc.

11-2591

g- 2109

Exp.

25061 11-
200 o

1552 4-

1184 5-

961 4-

G.S

33

Fig. 3. Experimental [36] and calculated energy levels of “Ce in (keV). We are predicting the position of

the 1~ state for '#6Ce, for which the corresponding experimental observation is absent [36].
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Fig. 4. Experimental [2] and calculated energy levels of *Nd in (keV). We are predicting the position of

the 1~ state for '*6Nd, for which the corresponding experimental observation is absent [2].
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Fig. 5. Experimental [2] and calculated energy levels of 8Nd in (keV). We are predicting the position of
the 1~ state for 8Nd, for which the corresponding experimental observation is absent [2].

group. Note that according to the calculation of Ref. [7] this nucleus has no equilibrium
octupole deformation, but its level structure (see Fig. 6) and intensive dipole cross-band
transitions support the point of view that '*'Nd has equilibrium octupole deformation.
The agreement of calculated and experimental energies for °Nd presented in Fig. 6 is
excellent for positive parity and is good for the band of negative parity. The agreement
of these quantities for the band of negative parity in °Sm is also quite satisfactory.
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Fig. 6. Experimental [2] and calculated energy levels of 'ONd in (keV).
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Fig. 7. Experimental [35] and calculated energy levels of 13Sm in (keV). We are predicting the position of
the 1~ state for 3%Sm, for which the corresponding experimental observation is absent [35].

6.2. Energy-level schemes of heavy even—even nuclei

A comparison of experimental and theoretical energy levels for heavy even-even
nuclei is presented in Figs. 8-20. The isotope dependencies of level structure and fitting
parameters can be analyzed for Ra and Th. The energy of the first 2% levels in isotopes
of Rn, Ra and Th decreases with growing neutron number and has smaller value than
for middle nuclei. The energies of the 1~ states in heavy nuclei are also lower than in

n
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Fig. 8. Experimental |37] and calculated energy levels of 22°Rn in (keV).
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Fig. 9. Experimental [37) and calculated energy levels of 222Rn in (keV).

middle nuclei. Unfortunately, the first states of the negative-parity band are not observed
in all isotopes of Ra and Th. However, the dependence of energy of the 1~ states on
neutron number is not monotonous in contrast to the case of the 2% states, see the
discussion in Ref. [25]. The position of the 1~ state in even-even nuclei depends on
the height and width of the potential barrier separating potential wells with opposite
deformation parameters of odd multipolarity. We predict the position of the first states
of negative-parity bands in many isotopes, which may be observed experimentally.
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Fig. 10. Experimental [ 18,19] and theoretical energy levels of 2/8Ra (in keV). Theoretical energy levels ob-
tained in the framework of the interaction boson model (IBM) are taken from Ref. [ 18]. We are predicting the
position of the 1~ state for 2'8Ra, for which the corresponding experimental observation is absent | 18,19,58].
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Fig. 11. Experimental (23] and calculated energy levels of 2’Ra in (keV). We are predicting the position of
the 1~ and 3~ states for 22°Ra, for which the corresponding experimental observations are absent [23].

The parameter hw for these nuclei is smaller than for middle atomic-weight nuclei,
see Table 1. This parameter has a small variation practically for all even-even heavy
nuclei. The deviations from the average value of the parameter he exist in isotopes
222.228Ra. Note, that these two isotopes have a small number of known levels, that leads
to a small accuracy of extraction of fitting parameters.
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Fig. 12. Experimental [25] and calculated energy levels of *22Ra in (keV).
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Fig. 13. Experimental [26] and calculated energy levels of 2*Ra in (keV).

The values of the parameters doi increase and, respectively, the softness parameter u
decreases with growing neutron number in even-even Th isotopes. The fitting parameters
d* presented in Table 1 give rise to the conclusion that increasing the neutron number
in the 1sotope chain of even-even nuclei seems to be connected with the transition from
soft nuclei with respect to the shape deformation to the more rigid ones. The spectrum of
more heavy isotopes is more close to the simple rotator spectrum. Finally, one can point
out that the spectra of Ra and Th isotopes known to very high spins are satisfactorily
described by the very simple formula (41), as follows from Figs. 10-12, 14, 16-20.

In Fig. 10 we compare also our calculations with the results of the interacting boson
model (IBM) available {18] for 2'®Ra. We see that our model has a sightly worse
description than the IBM. However, the IBM uses four fitting parameters for even-even
nuclei, whereas our model has only three ones.
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Fig. 14. Experimental |27] and calculated energy levels of *26Ra in (keV).
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Fig. 15. Experimental {27] and calculated energy levels of 22Ra in (keV).
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Fig. 16. Experimental [29] and calculated energy levels of 2’ Th in (keV). We are predicting the position of
thel = and 3~ states for 220Th, for which the corresponding experimental observations are absent |29].
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Fig. 17. Experimental [29] and calculated energy levels of 22Th in (keV). We are predicting the position of
the 1™ states for 22°Th, for which the corresponding experimental observation is absent [29].
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Fig. 18. Experimental {31] and calculated energy levels of 24Th in (keV).
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Fig. 19. Experimental [31] and calculated energy levels of 26 Th in (keV).

6.3. Energy-level scheme of odd nuclei

The comparison between experimental and theoretical data for the main rotational
bands of odd nuclei is presented in Figs. 21-37.

The agreement between the experimental and theoretical level scheme for '>'Pm
presented in Fig. 21 is good for both parity bands.

In heavy odd nuclei we can analyze the isotope dependencies of level structure and
fitting parameters for Ra, Ac and Th. The energy level density in odd heavy isotopes is
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Fig. 20. Experimental [31] and calculated energy levels of 228Th in (keV).
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Fig. 21. Experimental |2} and calculated energy levels of ' Pm in (keV).

larger than in even-even ones.

Note that sometimes the ground state of odd nuclei has negative parity, see, for
example, Ac isotopes. For such nuclei the sign of the parameters d* associated with the
reflection symmetry of the core, does not coincide with the parity of the nuclear bands.

The fitting parameters hw, dat and a for odd nuclei have larger variation than for
even—even heavy nuclei, see Table 2. It is connected with a wide range of variation
for the first excited-state energies of positive and negative parities. As a result there
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Fig. 22. Experimental {40} and calculated energy levels of 27 Fr in (keV). We are predicting the position of
the LL*, 5% and %"L states for 27 Fr, for which the corresponding experimental observations are absent [40].
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Fig. 23. Experimental [41] and calculated energy levels of 29Fr in (keV). We are predicting the position of
1

the 5+ state for 21°Fr, for which the corresponding experimental observation is absent [41].

is no simple monotonous dependence of the parameters fiw and doi on the number of
neutrons. Here we point out that a small number of levels is measured in the main
rotational bands of 22*?25Ra and 2*Th, therefore the fitting parameters for these nuclei
are not extracted with desired accuracy and may change if additional levels will be
measured.

The isotopes *2!223225227R3 are more soft to shape deformation due to rotation than
the nearest even-even ones (see Tables 1 and 2, where the parameters di for odd
isotopes are larger than for even—-even isotopes of Ra). In contrast to this, the isotopes
223.225.229Th are more rigid to shape deformation than the nearest even—even ones.

We pointed here that the spectrum of levels in several isotopes of Fr, Ra, Ac and Th
is known up to very high values of spin and we satisfactorily describe them with the
help of the very simple expression (49), see Figs. 22, 25, 27, 30, 33-36.

In Figs. 28-30, 32-34 we present also the results of the microscopic model by Leander
and Chen [5]. We see that our model gives a better description than the microscopic
model for isotopes 223:225227Rq, 223225A¢ and sightly worse description for the isotope
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Fig. 24. Experimental [41] and calculated energy levels of 22'Fr in (keV).

227 Ac. The values of level energies of the odd-parity band for Ra isotopes calculated
in the framework of the microscopic approach [5] are systematically higher than the
corresponding experimental data and our calculations. Note that we consider here only
the main rotational band in contrast to Ref. [5].

For nuclei of 2!%221Fr there is a microscopic calculation of Kvasil et al. [41], whose
excellent description of experimental data is better than ours, see Figs. 23 and 24.
However, we note that our model is much simpler and clearer than any microscopic
model and is not connected with complicated calculations.

In all odd isotopes except 2!Fr, 2'Ra and 22'Th the rotational bands have spins I,
(Io+ )%, (Jo +2)%, (Io+3)%, (Io+4)%, ..., ie. there realizes a strong coupling
between the even—even core and unpaired nucleon, which we accepted in Section 3.

The situation with the level scheme in 2!"Fr, 2'Ra and 2?'Th nuclei is not clear up
to now. The sequence of levels in these three nuclei is the same as in even-even nuclei,

e. ISL, (Io+2)*, (Ip+4)", ... in positive-parity bands and (Ig + 1)~, (Ip +3) 7,
(Io +5)7, ... in negative-parity bands [40,20,32]. These isotopes are theoretically
considered [2,20] in the approximation of weak coupling between the even—even core
and unpaired nucleon. In the limit of weak coupling between core and unpaired nucleon
one can neglect a contribution of the unpaired nucleon and to obtain the expression for
the level energy similar to (41). In this case the sequence of spins is the same as in
even-even nuclei, see also Ref. [44]. However, recently a more complete scheme of
21%Ra is observed [22], which has two additional bands in comparison with Ref. [20].
Here we assume that the additional band marked 7 in Ref. [22] along with the bands,
found previously [20], form usual bands with spins I, (Io+1)*, (Ip+2)%, .. .. Since
2%Ra has K = 1, the sequence of spins can be permutated. The comparison of such an
experimental scheme of levels with our theoretical calculation is presented in Fig. 25.
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Fig. 25. Experimental [20,22] and calculated energy levels of 2®Ra in (keV). We are predicting the position
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of the % , 12—1 s 2—5 , % , % , %Jr, 475 ,ar 922 , 52—1 s % and %3 states for 219Ra, for which the
corresponding experimental observations are absent [ 20,22].
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Fig. 26. Experimental [24] and calculated energy levels of 21Ra in (keV).
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Fig. 27. Experimental [2] and calculated energy levels of 23Ra in (keV). The theoretical energy levels
obtained in the framework of the microscopic model by Leander and Chen (L-C) are taken from Ref. {5].

Following Refs. [2,20], we assume that the ground state of 2'°Ra has spin 3. This
value of spin of the ground state is not completely rejected in Ref. [21], where the spin
of the ground state is determined from a-decay of 2*Th. Note that the determination
of the level spin from a-decay is not unique, see also the discussion in Ref. [21]. We
can see the excellent agreement between theoretical and experimental data in Fig. 25. If
we make the assumption that the ground-state spin is %t then y? deviations between
calculated and experimental values of level energies is greater in comparison with our
result for Igg = %+. It would be useful to remeasure the spectra of >'’Fr and 2%!Th
with higher accuracy. These nuclei have also K = %, therefore the situation with side
bands and type of coupling is not quite clear. The results for 2’Fr and ??!Th in the
weak-coupling approximation are presented in Figs. 22 and 34 correspondingly.
Comparing the experimental and theoretical values of the level energies in Figs. 1-37
we can conclude that the very simple expressions (41) and (49) give a good description.
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Fig. 28. Experimental |2} and calculated energy levels of 225Ra in (keV). The theoretical energy levels
obtained in the framework of the microscopic model by Leander and Chen (L-C) are taken from Ref. [5].

6.4. Transition probability

The experimental information about transition probabilities is not so rich as for energy
levels. Nevertheless there are some measurements to be analyzed below.

Now we shall be engaged with the different ratios of transition probabilities between
levels of the main bands. The ratio of reduced probabilitics depends on the parameter
s*(1,0), which is related to the parameters 4% (see Eqgs. (32), (33), (36)). They may
be easily expressed in terms of the parameters d=:

1 2
£(10) = = + I , 77
sT(10) 3 l+m\/d +1(1+1) (77)

where the factor /(1 + 1) is replaced by f(/, K, £) for odd nuclei.

For numerical calculations of the transition probabilities ratios we employ the param-
eters d* from Tables 1 and 2, which are already found during the fitting of energy
levels. There remains the uncertain parameter Fy. It may be estimated, taking the hy-
drodynamics ratios of the mass parameters B, and B,y [44]

Bivi _ A
B, A+ 1

(78)

and equilibrium deformation parameters 39, calculated in Ref. [7] by the shell-correction
method [57]. Then
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Fig. 29. Experimental [5] and calculated energy levels of 27Ra in (keV). The theoretical energy levels
obtained in the framework of the microscopic model by Leander and Chen (L-C) are taken from Ref. [5].

We are predicting the position of the 1, %- and %+ states for Z27Ra, for which the cormesponding

experimental observations are absent {5]. The positions of these levels are not discussed by Leander and
Chen [5].

_1ZL0+ D) (BY)
6 Z;\]:z(ﬁg)z//\ ‘

Let us analyze the behavior of R(/, L) as a function of spin /. The ratios of reduced
probabilities R({,L) (74) for L = 1,2, 3, calculated in our model, and experimental
data for 226Ra are presented in Table 3. The experimental data for R(I, L) are extracted
from analysis of the Coulomb excitation reaction in Ref. [27]. The values of R(I, L)
obtained in the rigid-rotor approximation are also presented in Table 3. The level scheme
of 22%Ra is shown in Fig. 14.

The parameter Fp = 1.62 is evaluated by the method described above. The parameters
of volume and surface stiffness, J =32.5 MeV and Q =50 MeV, needed for calculation
of the PEDM, were taken from Refs. [7,11,14].

The result for R(Z,L) provided by the soft-rotator model are always greater and
closer to experimental data than those, given by the rigid rotator.

The soft-rotator calculations for EL transitions indicate first the decrease of R(Z, L)
at small /, and then its smooth growth with increasing I. In contrast, the rigid-rotator
model predicts a slow decrease at all values of I (see Table 3). This tendency is
confirmed by experimental data, but it is somewhat obscure in the cases of quadrupole
and octupole transitions for which some experimental points deviate from such average
behavior. The procedure of extraction of transition matrix elements from data on the

0 (79)
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Fig. 30. Experimental [38] and calculated energy levels of 21°Ac in (keV). We are predicting the position of

- + . . . .
the -151- and % states for 21°Ac, for which the corresponding experimental observations are absent [38].
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Fig. 31. Experimental [39] and calculated energy levels of 23Ac in (keV). The theoretical energy levels
obtained in the framework of the microscopic model by Leander and Chen (L-C) are taken from Ref. [5].
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Fig. 32. Experimental {39] and calculated energy levels of 25Ac in (keV). The theoretical energy levels
obtained in the framework of the microscopic model by Leander and Chen (L-C) are taken from Ref. [5].

Table 3

Experimental {27] and theoretical values of the ratio R(/, L) with L=1,2,3 for 226Ra

Nucl.: L=1 L=2 L=3

I exp. soft rigid exp. soft  rigid exp. soft rigid
.392 0.000 0.056

0 100070355 1.000 1.000  1.00074%% 1.000 1.000  1.000:%%  1.000 1.000
0.235 0.008 0.042

1 0617H025 0676 0667 087479 0643 0600  0.618*9%2 0591 0.571

2 0298101, 0623 0600  053670%% 0533 0514 06861098 0491 0476
~+0.068 +0.004 0.077

3 0.18674 0% 0608 0571  04687¢% 0533 0476 082879 0471 0433

4 038404 0621 0556 0.50779%5 0500 0455  05721%%2 0443 0.408

S 0205T00% 0524 0441 04497095 0455 0392
+0.276 0.004 0.031

6 075874755 0663 0538 0441700 0511 0431 055574980 0443 0380

7 11764550, 0672 0533 0.38810%% 0543 0.424
+0.497 +0.004 0.032

8 1.355_34957 0726 0529  040270% 0539 0418 02447002 0461 0.365
-+0.60: +0.005

9 1535505 0731 0526 047270%5 0574 0414
+0.777 0.007

10 2074377 0801 0524 0.75570%7 0577 0410

1 21305058 0800 0522 08519918 0614 0.407
2.389 0.006

12 6.3507%%% 0.883 0520  0.42010%% 0621 0404
2.587 0.071

13 6.2597%% 0875 0519 0.6827000 0659 0.402

14 0.455100% 0,669  0.400

15 39037 L% 0968 0.517

16 01857955 0.669 0.400

—-0.004
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Fig. 33. Experimental [39] and calculated energy levels of 22Ac in (keV). The theoretical energy levels
obtained in the framework of the microscopic model by Leander and Chen (L-C) are taken from Ref. [5].

Coulomb excitation is not direct and unique [27]. We point out here that the values of
the experimental matrix elements fluctuate strongly especially at large angular momenta
in Ref. [27]. Therefore, if we do not consider some points strongly deviating from
common tendencies in Table 3, then we can make the conclusion about good agreement
between the experimental data and theory of soft rotator.

In Table 4 we compare the calculated and experimental branching ratios of the reduced
probabilities for dipole and quadrupole transitions from the same level W(I) for a
number of radium and thorium isotopes. The values of the parameters df,t are taken
from Table 1 and B9, B3, ..., B9 from Ref. [7]. The parameters G,/G, in Table 4
are determined by the least-squares method minimizing the sum of relative deviations
between the experimental and theoretical branching ratio W(I) for each level of the
considered nuclei.

The correlation between experimental and theoretical values of the branching ratio
W(1) is satisfactory for all the isotopes presented in Table 4.

Table 4 shows that the theoretical ratio of the reduced probabilities of dipole and
quadrupole transitions, W(/), increases slightly with the growth of the spin /. The
same tendency is observed experimentally in 222Th. In other isotopes the values W ()
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Fig. 34. Experimental [32] and calculated energy levels of %! Th in (keV). We are predicting the position of
the 27 state for 221 Th, for which the corresponding experimental observations are absent [32].

Calc. Exp. Calc. Exp.

3+ 19415 1951.0 (=4
pr iy =

17560 xun+ | _ 9 8
%+ 1739.5 — 3 % 1732.8 1701.0 (@)
2

29+ 1544.6 15510 29+ g9- 15377 ~ 1558.0 29-

2 2 2 2

7+ 13572 13700 27+ o 1350.2

¥ R S 1313.0 2r-
2

s+ 1178.1 11850 25+ 4o 11709 _1179.0 z5-

2 P22 z

o+ 1008.0 10210 m+ g0

n P po 10005 9610 ;-
2

n+ 8474 8580  m* 4 - 8398 838.0  ai-

2 Ty e

+697.3 706.0 _ 68

L+l e et 6895 G570 -
?

17+_558.2 5690wt - 5503 518.0  17-

2 z 7 F

15+ 431.1 4290 15+ 13- 4230 112.0 15—

P 2 2 2

1w+ 3167 3200 s+ 13- 3084 3240 19~

z T 2430  n-

n+_215.6 2120  n+ - 2072 180.0 2

2 2 2 - 2=

o+ 128.8 119.0 o+ 9= _120.2 2

2 = —_— % 1 i

7+ _56.7 510 3+ i- 480

%* 2 2 2 G.S

Fig. 35. Experimental [32) and calculated energy levels of 22 Th in (keV). We are predicting the position of
the %_ state for 23Th, for which the corresponding experimental observations are absent [32].
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Fig. 36. Experimental [33] and calculated energy levels of 25Th in (keV). We are predicting the position

of the %n, g_, %_ and %_ states for 225Th, for which the corresponding experimental observations are
absent [33].

fluctuate strongly as a function of the spin.

In Table 4 we also present the results of calculation in which only quadrupole and
octupole deformations are taken into account. These numerical results are much less
than the experimental data. Therefore, the role of deformation of high multipolarity
is very important for a correct estimation of the ratios of the reduced probabilities.
Here we should remember that absolute values of the parameter G, are always smaller
than 1 (see also Refs. [14,15]). The growth of the branching ratio W(I), when the
deformations of higher multipolarities are taken into account, is associated with the
corresponding increase of the PEDM, see Eq. (62).
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Fig. 37. Experimental [5] and calculated energy levels of **Th in (keV).

7. Conclusion

We constructed a generalized nonadiabatic model, analogous to that of Davydov and
Chaban [45,46]. They dealt only with quadrupole deformations of even—even nuclei,
while we considered a much more complicated case, when the equilibrium shape of
the nucleus is defined by a few deformation parameters 83, 83, ..., BY. Davydov and
Chaban were able to calculate the energies only of the vibrational-rotational bands
of positive parity; Williams and Davidson [49] only of the bands of negative parity.
We have been starting from the very clear fact, that such nuclei with equilibrium
deformations of odd multipolarity have two symmetric potential wells separated by a
potential barrier, which enabled us to reproduce both bands simultaneously. We stress
here that we fix only the energy of the nuclear ground state, but not the band-head of
the opposite-parity band. These bands are associated with symmetric or antisymmetric
combinations of the wave functions, describing vibrations in these two potential wells.
A relative shift of the bands with opposite parity is due to tunneling under the potential
barrier separating potential wells. An idea is also exploited that the power series for the
potential energy in terms of deviations from minima of the potential energy B3 or B?v
must contain not only powers of 8, — B2, but also their products (8 —B83)"(Ba—BN)"™,
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Table 4
Experimental and theoretical values of the branching ratio W(7) in units of 10~¢ fm~2

Nucl.: 28Ra [18] 20Ra [23] 20Th [29] 22Th [29]
Fo: 1.462 2,134 1.300 1.926 1.470 2.007 1.316 1.772
G 1.000 0.433 1.000 0.295 1.000 0.372 1.000 0.438
1 exp. theor. theor. exp. theor. theor. exp. theor. theor. exp. theor. theor.
B2y Pa.s B3 Pa..s B3 B3 Bz P2
6 37 0746 2.783 1.8 0.603 1.654 1.1 0.890 2.437
7 2.8 0432 1.840 22 0.679 1.822 1.1 0425 1.341
8 35 0736 2771 1.2 0555 1.434 23 0.628 1.717 2.5 0.900 2.468
9 22 0468 1.969 1.7 0.699 1.876 14 0458 1.431
10 1.1 0.743 2814 1.8 0.577 1.487 1.6 0.658 1.793 26 0915 2514
11 36 0502 2.093 1.6 0.502 1.342 1.3 0.725 1.945 2.6 0492 1.525
12 1.8 0.758 2.880 1.2 0599 1.542 1.9 0931 2.566
13 29 0535 2213 1.9 0.528 1.406 26 0.526 1.618
14 1.3 0776 2957 08 0.621 1.597 22 0948 2.621
15 2.9 0566 2.329 1.3 0553 1468 34 0.558 1.709
16
17 2.1 0577 1.529
where n,m=0,1,2,... and n+ m > 2. Therefore, in the harmonic approximation there

must exist uncoupled nuclear vibrations being mixtures of B, B3, B4, ...vibrations. In
other words, pure quadrupole, octupole etc. vibrations can be met only occasionally. In
the general case the nuclear potential energy has a complicated structure and its choice
as in (22) is based only on our desire to solve the problem analytically. In principle,
these solutions might be treated as a zero-order approximation and any additional terms
of the potential energy might be taken into account as a perturbation.

In applications of the model we described only the ground-state band and the matched
band of the opposite parity with the help of a very limited number of fitting parameters.
It is worth noting that excited bands, built on the global E vibrations, must exactly repeat
the main bands with n = 0. They need no additional parameters except for Fo, which
defines the band-head position. At the same time the description of the bands, built on
excited angular vibrations, demands new parameters 4% or d* depending on the angular-
phonon numbers ». Choosing experimental data for comparison with calculation we have
been taking either generally adopted levels of two bands of opposite parity or, in some
cases, those with nearest energy to the calculated one. Sometimes there is a discrepancy
between the model and experiment for low-lying levels of odd parity. In even—even
isotopes the experimental data for the 1~ state are absent, owing to difficulties in its
observation {58]. There are different opinions about its existence in nature. Here we
assume that this level exists really in a sequence 17,37,57,... with growing energies.
And nevertheless our very simple model well describes the experimental data for most
isotopes.
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