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Abstract—Nuclear-interaction potentials that are calculated by using Skyrme forces within the extended
Thomas–Fermi approximation and Hartree–Fock–Bardeen–Cooper–Schrieffer theory are studied in
detail. It is shown that the nuclear component of the potential simulating the interaction between nuclei
grows with increasing number of neutrons in colliding isotopes and with increasing diffuseness parameter
of the density distribution in interacting nuclei. An increase in the diffuseness parameter of the density
distribution in interacting nuclei leads to a decrease in the height of the barrier between the nuclei and to
an increase in the depth of the capture well and in the fusion cross section. It is shown that the diffuseness
parameter calculated for the nuclear component of the potential at large distance between interacting nuclei
by using Skyrme forces exceeds the diffuseness parameter of the nucleon-density distribution in these
nuclei by a factor of about 1.5. Realistic values of the diffuseness parameter of nuclear interaction between
medium-mass and heavy nuclei fall within the range a ≈ 0.75−0.90 fm.
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1. INTRODUCTION

In order to calculate various features of nuclear
reactions, it is necessary to know the potential energy
of interaction between the participant nuclei [1–3]. In
view of this, the magnitude and the radial dependence
of the nuclear-interaction potential at short distances
between the nuclei are of paramount importance for
describing cross sections for various reactions within
any model.

The interaction energy of nuclei receives contri-
butions from the Coulomb interaction of their pro-
tons and from the nuclear interaction of nucleons
contained in them [1–3]. The Coulomb interaction
of protons in colliding nuclei has been studied quite
well, but the nuclear interaction of nuclei is known
less precisely. In view of this, a rather large number
of various approximations of nucleus–nucleus inter-
action have been proposed to date [1–8], these ap-
proximations leading to different heights of the bar-
rier for nuclear fusion [8–11]. The barrier height is
determined by the interplay of the Coulomb repulsion
and nuclear-attraction potentials acting at short dis-
tances between the surfaces of interacting nuclei.

The relationship between the collision energy and
the barrier height determines the nuclear-reaction
mechanism. For example, an increase in the collision
energy leads to an increase in the number of possible
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reaction channels and to a change in the type of dom-
inant channels. In nuclear-reaction theory, it is com-
mon practice to classify reactions on the basis of the
relationship between the collision energy and the bar-
rier height as subbarrier reactions, near-barrier reac-
tions, threshold reactions, and so on. Since different
approximations of the nucleus–nucleus component
of the interaction lead to different values of the barrier
height [1–9], the same reactions may have different
mechanisms within different models. This point is
of particular importance for describing the synthesis
of superheavy nuclei. Such reactions are described
within the models that were proposed in [9–17] and
which are based on mutually exclusive concepts of
the process of compound-nucleus formation. At the
present time, it is therefore of paramount importance
to know precisely the potential of interaction between
participant nuclei and the respective barrier height.

In order to determine the nuclear interaction of
nucleons that belong to different nuclei, it is desir-
able to apply the most precise methods that were
developed for describing in detail various features
of the ground states of the nuclei and their excited
states [18–27]. By using these methods, one can also
calculate the energy of the interaction of nuclei to a
high precision. In this study, we will therefore employ
the semiclassical and the semimicroscopic approach
to determine the potential of the interaction of nuclei.
Within the semiclassical approach, the nucleon-
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density distributions in interacting nuclei and the
potential energy of their interaction are calculated in
the extended Thomas–Fermi (ETF) approximation
by using Skyrme forces. In the semimicroscopic
approach, the nucleon-density distributions in inter-
acting nuclei are determined in the Hartree–Fock–
Bardeen–Cooper–Schrieffer (HF–BCS) approxi-
mation by using Skyrme forces, while the potential
energy of their interaction is found in the ETF approx-
imation implemented for the case of Skyrme forces.
It should be noted that the ETF approximation and
HF–BCS theory involving Skyrme forces describe
well the binding energies of nuclei, the nucleon-
density distributions in them, their root-mean-square
radii, and many other features of the ground states of
nuclei and their excited states [18–25, 27].

Subbarrier-fusion reactions [1–3, 28–36] are of
importance from the point of view of determining
the potential of nucleus–nucleus interaction, since
such reactions are governed by the strength of the
interaction and by the behavior of the potential at
short distances between participant nuclei. A great
many different models have been proposed to date
for describing subbarrier-fusion reactions [1–3, 28–
36]. Frequently, the parameters of nucleus–nucleus
interaction are fitted in order to describe adequately
the fusion cross section. By way of example, we in-
dicate that, according to [32–36], an analysis of da-
ta on the subbarrier fusion of nuclei leads to quite
large values of the diffuseness parameter of the nu-
clear component of the nucleus–nucleus potential
parametrized in the form of the Woods–Saxon po-
tential (a ≈ 0.8−1.5 fm). At the same time, smaller
values of the diffuseness parameter of the nuclear
component of the nucleus–nucleus potential (a ≈
0.6−0.7 fm) are employed in many other studies [1–3,
7, 28–31] to describe various nuclear reactions.

In the double-folding approximation [2, 3, 8, 9], the
diffuseness parameter of the potential can be related
to the diffuseness of the nucleon-density distribution
in nuclei and the effective range of nucleon–nucleon
interaction. Since the effective range of nucleon–
nucleon interaction is rather small [18], the diffusion
parameter of the nucleon-density distribution is not
expected to differ markedly from the diffuseness pa-
rameter of the nuclear component of the potential.
Thus, it is of great interest to analyze comprehen-
sively the diffuseness parameter of the nuclear com-
ponent of the potential of nucleus–nucleus interac-
tion within various models. It is also interesting to
determine realistic values of the diffuseness parameter
of the nuclear component of the nucleus–nucleus
potential parametrized in the Woods–Saxon form.

This article is organized as follows. In Section 2,
we describe briefly basic properties of the radial dis-
tribution of nucleon densities calculated for spherical

nuclei in various approximations. In Section 3, we
calculate interaction potentials for various pairs of
nuclei, employing the results obtained for the radial
distributions of nucleon densities. Also, we discuss
there in detail the barrier heights and the depths
of the capture wells for various colliding systems.
In Section 4, we analyze the potential of nucleus–
nucleus interaction as a function of the diffuseness
parameter of the nucleon-density distribution in the
nuclei involved and discuss the relationships between
the diffuseness parameter of the nucleon-density dis-
tribution, the diffuseness parameter of the nuclear
component of the interaction potential, and the cross
section for the fusion of nuclei. A brief summary is
given in Section 5.

2. NUCLEON-DENSITY DISTRIBUTION
IN NUCLEI

The radial distribution of nucleon densities in
spherical nuclei was considered in various approx-
imations [18–25, 27]. The ETF approximation im-
plemented with Skyrme forces makes it possible
to describe density distributions, binding energies,
and other features of nuclei within the semiclassical
approximation [18–23]. The quantum-mechanical
self-consistent HF–BCS method employing Skyrme
forces and taking into account pairing forces is yet
another method for describing various properties of
nuclei [18, 24, 25, 27]. The Hartree–Fock method
describes nucleon-density distributions to a high
precision and is a fully microscopic approach [18,
24, 27]. The self-consistent HF–BCS method was
considered in detail in [18, 24]. A wide variety of
properties of nuclei in their ground and excited states
were described by using this method [18, 24, 25, 27].
The quantum-mechanical HF–BCS method is quite
involved, while the ETF approximation is simple and
clear. Below, we will briefly consider the application
of the ETF approximation to describing nucleon-
density distributions in nuclei and compare the results
obtained in this way with the predictions of the HF–
BCS method.

2.1. Modified Thomas–Fermi Approximation

The ETF method is specified by the equations [18,
19, 22, 23]

δE(ρn, ρp)
δρp

− λp = 0, (1)

δE(ρn, ρp)
δρn

− λn = 0, (2)

which are obtained from the variational principle
where the total energy of the nucleus is treated as
a functional of the neutron and proton densities (ρn
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and ρp, respectively). The total energy of the nucleus,
E(ρn, ρp), is obviously expressed in terms of the
respective energy density E(ρn, ρp) and is given by

E(ρn, ρp) =
∫

drE(ρn, ρp) (3)

=
∫

dr(τ + εpot + εCoul),

where τ , εpot, and εCoul are the densities of, re-
spectively, the kinetic, the potential nuclear, and
the Coulomb energy and τ = τn + τp is the sum
of the densities of the proton and neutron kinetic
energies. We note that the nucleon matter densities
and kinetic-energy densities depend on the spatial
coordinates r, but this dependence is omitted in
Eqs. (1)–(3) and below in order to avoid encumbering
the notation. In Eqs. (1) and (2), λn and λp are
Lagrange multipliers that are the chemical potentials
for, respectively, neutrons and protons and which are
associated with the requirement that the number of
neutrons, N , and the number of protons, Z, in the
nucleus be conserved:∫

drρn(p)(r) = N(Z). (4)

Within the ETF approximation, the kinetic energy
density to second-order terms in � is [19, 22]

τn(p) = τTF,n(p) + τ2,n(p), (5)

where

τTF,n(p) = kρ
5/3
n(p) (6)

is the density of the neutron (proton) kinetic en-
ergy in the Thomas–Fermi approximation, with k =
5
3
(3π2)2/3, and τ2,n(p) is the second-order gradient

correction in �. With allowance for all possible terms,
this correction has the form [19, 22]

τ2q = b1
(∇ρq)2

ρq
+ b2∇2ρq + b3

(∇fq∇ρq)
fq

(7)

+ b4ρq
∇2fq

fq
+ b5ρq

(
∇fq

fq

)2

+ b6h
2
mρq

(
Wq

fq

)2

,

where the coefficients take the values of b1 = 1/36,
b2 = 1/3, b3 = 1/6, b4 = 1/6, b5 = −1/12, and b6 =
1/2 and where we have used the following nota-
tion: hm = �

2/(2m), fn(p) = 1 + �m(α + β)ρn(p) +
�mαρp(n), α = (1/4)[t1(1 + x1/2) + t2(1 + x2/2)],
and β = (1/4)[t1(x1 + 1/2) + t2(x2 + 1/2)]. Here-
after, t0, t1, t2, t3, x0, x1, x2, x3, and α are the
parameters of the Skyrme potential [18, 19, 24,
25], while q = n or p. We note that the last term
in (7) stems from taking into account spin–orbit

interaction. In the second order in � with respect to
the kinetic energy, we have

Wn(p) =
W0

2
[2∇ρn(p) + ∇ρp(n)],

where W0 is the strength parameter of spin–orbit
interaction for the Skyrme potential (see [18, 19, 24,
25]).

In the case of Skyrme forces considered in [18, 19,
22–25], the potential-energy density is given by

εpot =
1
2
t0

[(
1 +

1
2
x0

)
ρ2 (8)

−
(

x0 +
1
2

)
(ρ2

n + ρ2
p)

]
+

1
12

t3ρ
κ

×
[(

1 +
1
2
x3

)
ρ2 −

(
x3 +

1
2

)
(ρ2

n + ρ2
p)

]

+
1
4

[
t1

(
1 +

1
2
x1

)
+ t2

(
1 +

1
2
x2

)]
τρ

+
1
4

[
t2

(
x2 +

1
2

)
− t1

(
x1 +

1
2

)]
(τnρn + τpρp)

+
1
16

[
3t1

(
1 +

1
2
x1

)
− t2

(
1 +

1
2
x2

)]
(∇ρ)2

− 1
16

[
3t1

(
x1 +

1
2

)
+ t2

(
x2 +

1
2

)]

× ((∇ρp)2 + (∇ρn)2) +
1
2
W0[(Jn + Jp)∇ρ

+ Jn∇ρn + Jp∇ρp],

where ρ = ρn + ρp and

Jn(p) = − hm

fn(p)
ρn(p)Wn(p).

Upon taking into account the exchange term in
the Slater approximation, the Coulomb energy den-
sity assumes the form

εCoul(r) =
1
2
e2ρp(r)

∫
dr′

ρp(r′)
|r − r′| (9)

− 3
4
e2

(
3
π

)1/3

ρ4/3
p (r),

where e is the proton charge.
In the spherically symmetric case, Eqs. (1) and (2)

reduce to the set of nonlinear integro-differential
equations that was obtained in [22] and which is
solved numerically by the method of successive
approximations, the boundary conditions for these
equations requiring that

ρq(r)|r→∞ = r−2 exp
(
−

√
|λq|/(hmb1)r

)
(10)
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and that ρq(r) be finite for r → 0. By numerically
solving these equations, one can find the radial dis-
tributions of neutron and proton densities in nuclei
in the ETF approximation (for more details, see [22,
23]).

2.2. Results of the Calculation of Nucleon-Density
Distributions in Nuclei

The radial distributions of the proton and neu-
tron densities in the ground states of the 208Pb and
48Ca nuclei are given in Fig. 1 according to calcula-
tions performed in the ETF approximation by using
the SkP [25] set of parameters for Skyrme forces.
These density distributions are contrasted against
their counterparts calculated in the self-consistent
HF–BCS approximation with the same set of param-
eters of Skyrme forces and against the experimental
charge-density distributions obtained from an analy-
sis of data on electron scattering by these nuclei [37].

The proton densities calculated in the ETF ap-
proximation are in satisfactory agreement with their
experimental counterparts and with those that were
calculated in the HF–BCS approximation. However,
the densities found in the semiclassical approxima-
tion decrease faster in the diffuse region and at long
distances than the experimental densities and the
densities calculated in the HF–BCS approximation.
Therefore, the value found for the diffuseness pa-
rameter of the density distribution in the ETF ap-
proximation is somewhat smaller than that which
was extracted from experimental data and than that
which was calculated in the quantum-mechanical
HF–BCS approximation.

In the region of the diffuse boundary of nuclei,
the radial density distributions calculated in the HF–
BCS approximation agree well with those extracted
from data (see Fig. 1). In the interior of nuclei, how-
ever, the quantum-mechanical density distributions
feature fluctuations whose amplitude is much greater
than the amplitude of respective fluctuations in the
experimental charge densities.

The distinctions between the density distributions
found in the semiclassical and in the quantum-
mechanical approach stem not only from the disre-
gard of shell effects in the semiclassical approach but
also from the distinctions between the values of the
constant b1 in expression (7) for the kinetic energy:
1/36 in the semiclassical case versus the quantum-
mechanical value of 1/4 [19, 20]. This also leads
to the difference in the asymptotic behavior of the
densities, which is determined by expression (10). As
a result, the densities obtained in the semiclassical
approximation decrease at the boundary of a nucleus
much faster than the densities found within the
quantum-mechanical HF–BCS method (see Fig. 1).

3. POTENTIAL ENERGY OF INTERACTION
BETWEEN NUCLEI

In the frozen-density approximation, the potential
energy of interaction between two nuclei separated
by a distance R, V (R), will be defined here as the
difference of the binding energies of the system of
these two nuclei at a finite and at an infinite distance
between them [8, 9, 38],

V (R) = E12(R) − (E1 + E2). (11)

The corresponding binding energies of the nuclear
system in question and of nuclei 1 and 2 can readily
be found by substituting the known nucleon-density
distributions in the nuclei into the semiclassical ex-
pressions for the energy-density functional:

E12 =
∫

ε[ρ1p(r) + ρ2p(r, R), ρ1n(r) (12)

+ ρ2n(r, R)]dr,

E1 =
∫

ε[ρ1p(r), ρ1n(r)]dr, (13)

E2 =
∫

ε[ρ2p(r), ρ2n(r)]dr. (14)

The nucleus–nucleus potential at finite distances be-
tween the surfaces of nuclei owes its existence to the
interaction of nucleons in the region of the overlap-
ping tails of the nucleon-density distributions. There-
fore, the inclusion of the gradient terms in the kinetic-
energy density (7) is of importance for accurately
calculating the potential.

In a collision of two nuclei, each of them affects
the nucleon distribution in its collision partner owing
to the effect of both the Coulomb and the nuclear
component of the nucleon–nucleon interaction. In
the frozen-density approximation, it is assumed that
the interaction of nuclei does not change nucleon
densities. Obviously, this approximation is valid at
the initial stage of a collision process, as long as
the nuclear densities overlap only slightly, so that the
interaction of nucleons belonging to different colliding
nuclei is weak. In collisions of heavy nuclei at near-
barrier energies, the density distributions in colliding
nuclei do not have time to change sizably at the initial
stage of the collision process either. The time ts over
which nuclei traverse the strong-interaction region of
size s ≈ 3 fm can be estimated as

ts ≈ Rt[2µs/(e2Z1Z2)]1/2,

where Rt is the distance equal to the sum of the radii
of the nuclei, µ is their reduced mass, and Z1 and Z2
are the numbers of protons in the interacting nuclei.
As a rule, ts ≤ 10−21 s in collisions of heavy nuclei.
The relaxation time for internal nuclear states that
is associated with nucleon–nucleon interaction can
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Fig. 1. Radial distributions of the proton and neutron densities in 48Ca and 208Pb nuclei according to calculations in the
extended Thomas–Fermi approximation (ETFA) and within Hartree–Fock–Bardeen–Cooper–Schrieffer (HF–BCS) theory.
For the sake of comparison, the calculated proton densities are plotted along with the respective charge densities extracted
from experimental data on electron scattering by 48Ca and 208Pb nuclei.

be estimated as trelax ≈ 2 × 10−22/ε∗ s [9, 39], where
ε∗ is the excitation energy in megaelectronvolts per
nucleon in the nuclear system being considered. At
near-barrier energies of a collision between two rather
heavy nuclei, ε∗ is below 5/A MeV, where A is the
number of nucleons in the system; therefore, trelax ≈
0.4A × 10−22 s. It follows that, for heavy systems
containing about 50 or more nucleons, the relaxation
time is longer than the time over which such a nu-
cleus traverses the strong-interaction region. In this
case, the nucleon-density distributions do not have
time to change sizably as the nuclei involved traverse
the strong-interaction region; as a result, the frozen-
density approximation is valid. Since trelax grows with
increasing A, this approximation becomes more jus-
tified for heavier systems.

The nucleus–nucleus potentials V (R) for the
16O + 16O, 66Zn + 66Zn, 118Sn + 118Sn, and 208Pb +
208Pb combinations are displayed in Fig. 2 according
to calculations in the ETF approximation. The depth
of the capture well is seen (Fig. 2) to decrease sub-
stantially with increasing mass number of interacting
nuclei. Moreover, there is no capture well in the
208Pb + 208Pb system at all. The absence of the
capture well or a decrease in its depth and width in
heavy systems is explained by a considerable increase
in the Coulomb energy of the repulsion of nuclei with
increasing number of nucleons in them, this increase
not being compensated by the corresponding increase
in the attraction of these nuclei.

As the mass number increases, the capture well
is shifted toward larger distances, the minimum of
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the capture well occurring at a distance exceeding
the sum of the root-mean-square radii of interact-
ing nuclei for medium-mass and heavy systems or
a distance smaller than the analogous sum for light
systems (see Fig. 2).

In the frozen-density approximation, the poten-
tial energy of the interaction between colliding nu-
clei increases sharply at distances smaller than the
sum of the radii of the nuclear surfaces because of
a strong nuclear repulsion. This repulsion is due to
the compressibility of nuclear matter and to a strong
overlap of the densities of interacting nuclei, this
leading to the emergence of the region where the
density of nuclear matter exceeds a normal nuclear
density. A sharp growth of the potential energy be-
cause of a strong overlap of the densities also leads
to the relaxation of the density. We note that, as the
nucleon excitation energy ε∗ in the nuclear system
grows, the relaxation time decreases, with the re-
sult that the nucleon-density distribution begins to
change, whence it follows that the frozen-density ap-
proximation becomes invalid. Thus, it is legitimate to
apply the frozen-density approximation to analyzing
nucleus–nucleus potentials V (R) only in the vicin-
ity of the barrier and in the vicinity of the point at
which interacting nuclei touch each other. Respective
information about the potential V (R) is of use for
describing various near-barrier nuclear reactions. At
smaller distances between nuclei, the frozen-density
approximation may be valid only at high collision
energies.

The capture well plays an important role in a colli-
sion of two heavy nuclei. Participant nuclei overcome
the barrier within a rather short time and reach the
capture well at the initial stage of the collision pro-
cess. Various states of the system of two strongly
overlapping nuclei are populated in the capture well,
where there occur various processes characterized by
the number of open reaction channels and by the
probabilities of transitions between these channels.
Some of these channels produce a complex excited
system of strongly overlapping nuclei, while the oth-
ers lead to the separation of nuclei. A complex ex-
cited state of strongly overlapping nuclei that arises
in the capture well forms the entrance channel for the
production of a compound nucleus or for the fusion–
fission reaction. States that are formed in the capture
well and which are associated with outgoing nuclei
contribute to the elastic channel and to various in-
elastic reaction channels. It follows that, in the case of
heavy systems, the absence of a capture well leads to
a change in the reaction mechanism and hinders the
formation of a compound nucleus. Nucleon–nucleon
collisions in the capture well also lead to the re-
laxation of the nuclear density, with the result that
the nucleon-density distribution changes smoothly
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Fig. 2. Interaction potential for the 16O + 16O, 66Zn +
66Zn, 118Sn + 118Sn, and 208Pb + 208Pb pairs of col-
liding nuclei according to calculations in the extended
Thomas–Fermi approximation. Points (�) indicate the
position of the sum of the root-mean-square radii of col-
liding nuclei.

from a frozen to an adiabatic one. The potential of
nucleus–nucleus interaction also undergoes changes
owing to this relaxation of the nucleon density.

The potential V (R) of the interaction
between 64Ni and the nuclei of five tin isotopes
100,114,118,124,132Sn are displayed in Fig. 3 according
to calculations in the ETF approximation. Also given
in this figure are the proton and neutron densities for
these isotopes. As the mass number of tin isotopes
increases, the neutron-density distribution becomes
more extended, but this concerns the proton densities
to a smaller extent. This leads to the formation of a
neutron skin in tin isotopes featuring a high neutron
excess. The above properties of the neutron and
proton densities lead to a strong isotopic dependence
of the potential of interaction between respective
nuclei. By way of example, we indicate that, with
increasing mass number of tin isotopes, the barrier
height decreases, while the depth and the width of the
capture well increase. The isotopic dependence of the
barrier height and of the potential is also confirmed by
experimental data. According to the measurements
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Fig. 3. Potentials of interaction between 64Ni and nuclei
of the tin isotopes 100,114,118,124,132Sn along with the
radial distributions of the proton and neutron densities
in these isotopes according to calculations in the ETF
approximation.

reported in [40], the fusion cross sections at barrier
energies for reactions involving neutron-rich nuclei
132Sn are larger than the analogous cross sections for
reactions involving other tin isotopes that lie along
the beta-stability line.

As was mentioned above (see also Fig. 1), the
nucleon-density distributions calculated according to
HF–BCS theory have a larger thickness of the dif-
fuseness layer than those that were found in the ETF
approximation. In view of this, it is reasonable to
compare potentials obtained within the different ap-
proximations. Figure 4 shows the interaction poten-
tials calculated for the system of 48Ca and 208Pb
nuclei in the ETF approximation and in HF–BCS
theory.

The potential obtained in the HF–BCS approx-
imation has a lower barrier height and a narrower
capture well than the potential found in the semiclas-
sical approximation (see Fig. 4). This is because the
nucleon-density distributions calculated in the HF–
BCS approximation are characterized by a thicker
diffuseness layer of a nucleus in relation to those
that were found in the semiclassical approximation.
Because of these properties of the nucleon-density
distributions, the nuclear interaction between nuclei
at long distances between their surfaces is stronger
in the HF–BCS approximation than in the ETF ap-
proximation, while the Coulomb interaction is nearly
identical in these two cases. The growth of the nu-
clear component of the interaction between nuclei
at long distances between their surfaces reduces the
height of the barrier between these nuclei. Owing to a
greater diffuseness of the nucleon density, the region
of a strong overlap of the densities belonging to the
different nuclei becomes narrower, which leads to a
reduction of the nuclear repulsion at short distances
between interacting nuclei. As a result, the width and
the depth of the capture well increase. This high-
lights a strong effect of the diffuseness of the nuclear-
matter-density distribution on the properties of the
potential of nucleus–nucleus interaction.

The interaction potentials calculated on the basis
of the simple expressions proposed in [1, 4–8] are
presented in Fig. 4 for the sake of comparison. The
potentials proposed in [5, 6] are defined only to the
point at which the nuclei involved touch each other;
therefore, they are given in Fig. 4 only to this point
as well, which corresponds to Rt ≈ 11.5 fm. In par-
ticular, Fig. 4 shows the results obtained by using the
potential parametrizations proposed by Bass in 1974
and 1980 [1] (Bass 1974 and Bass 1980 in the figure).
We can see that the potentials calculated in the differ-
ent approximations differ substantially from one an-
other in the barrier region. The different parametriza-
tions yield different barrier heights, this leading to
ambiguities in describing fusion and fusion–fission
reactions, as well as reactions involving the synthesis
of superheavy nuclei. We note that the half-width of
the maximum of the cross section for the formation
of a heavy nucleus is about 3 MeV [41], which is
much less than the uncertainty in the barrier due to
the use of the various theoretical approximations for
the nucleus–nucleus interaction.

The behavior of the potentials found in the different
approximations is also markedly different at distances
shorter than Rt ≈ 11.5 fm (see Fig. 4). Therefore, the
assumptions that can be inferred from an analysis
of these potentials at short distances for the mecha-
nisms that would govern nuclear reactions after the
nuclei overcome the barrier may also be markedly
different.
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Fig. 4. Potentials of interaction between the 48Ca and 208Pb nuclei according to calculations performed in the extended
Thomas–Fermi approximation (ETFA) and within Hartree–Fock–Bardeen–Cooper–Schrieffer (HF–BCS) theory by using
Skyrme forces, along with the results obtained by calculating these potentials on the basis of the expressions proposed in [1,
4–8].

4. DIFFUSENESS OF THE DENSITY
DISTRIBUTIONS AND DIFFUSENESS

OF THE NUCLEAR COMPONENT
OF THE NUCLEUS–NUCLEUS

INTERACTION

4.1. Diffuseness of Nucleon Densities and Properties
of the Nucleus–Nucleus Interaction Potential

In order to study in greater detail the effect of
the diffuseness of the nucleon densities in colliding
ground-state nuclei on the nucleus–nucleus poten-
tial, we parametrize such nucleon densities in the
form

ρn(p) = ρ0n(p)/{1 + exp[(r − Rn(p))/d]}. (15)

This parametrization of radial nucleon-density dis-
tributions is frequently used in nuclear physics [42].
The parameters ρ0n(p) and Rn(p) of such distributions
were found by the direct variational method at a fixed
value of the diffuseness parameter d of the density
distributions. By varying ρ0n(p) and Rn(p), we mini-
mized the binding energy calculated for the nucleus
being considered with allowance for the gradient cor-
rections in the kinetic-energy functional for the case
of SkP Skyrme forces. The diffuseness parameter d
of the neutron and proton densities was varied with
a step of 0.05 fm over the interval between 0.5 and
0.8 fm. The radial distributions of the neutron and
proton densities in the ground states of the 16O and
208Pb nuclei are given in Fig. 5 for the above values of

the diffuseness parameter. These densities were used
to calculate the potentials of nucleus–nucleus inter-
action, which are also displayed in Fig. 5. In order to
calculate the potential, we employed the ETF approx-
imation and assumed the case of SkP Skyrme forces.
Also presented in Fig. 5 for the sake of comparison is
the potential of the interaction between the 16O and
208Pb nuclei according to the calculation within HF–
BCS theory for the same parametrization of Skyrme
forces.

At large distances between the nuclei, the poten-
tial calculated in the HF–BCS approximation is close
to the potential based on the parametrization of the
density in the form (15) at a diffuseness-parameter
value in the range d ≈ 0.50−0.55, but, at shorter
distances, it is close to the potential calculated at
d ≈ 0.60 fm (see Fig. 5).

As the diffuseness parameter d of the density dis-
tribution grows, the capture well is shifted toward
larger distances between colliding nuclei. Concur-
rently, the well becomes deeper, while the potential-
barrier height decreases. The reason is that, with
increasing diffuseness of the density distribution, the
nucleon densities become more extended; as a result,
the nuclear interaction at large distance between the
nuclei involved grows, which leads to the reduction
of the barrier height. With increasing diffuseness d
of the density distributions, the nuclear densities be-
gin to overlap strongly at smaller distances between
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Fig. 5. (a) Interaction potentials calculated for pairs of 16O and 208Pb nuclei in the semiclassical approximation at various
values of the diffuseness parameter d of the ground-state densities (curves). Also given for the sake of comparison the potential
found in the Hartree–Fock–Bardeen–Cooper–Schrieffer (HF–BCS) approximation by using Skyrme forces (open circles).
(b, c, d, e) Proton and neutron densities in the ground states of the 16O and 208Pb nuclei at various values of the diffuseness
parameter d.
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the nuclei, with the result that the nuclear repulsion
between the nuclei, which is due to nuclear-matter
compressibility, decreases. This leads to an increase
in the depth and width of the capture well.

Figure 6 shows the potential-barrier height Vbar(d)
and the potential value at the bottom of the potential
well, Vwell(d), versus the diffuseness parameter d of
the ground-state nucleon densities. With increas-
ing d, the function Vbar(d) decreases linearly, while
Vwell(d) decreases faster. The capture-well depth,
which is determined by the difference Vbar(d) −
Vwell(d), increases with increasing d.

The HF–BCS approximation describes well the
experimental radial density distributions; therefore,
the potentials calculated by using the parametrization
of the density in the form (15) at the diffuseness-
parameter value in the range d ≈ 0.51−0.6 fm are
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Fig. 8. Approximation of the interaction potential for the
16O and 208Pb nuclei that was obtained in the ETF
approximation (solid curve) by a potential of the Woods–
Saxon form (dashed curve).

close to realistic potentials at various distances be-
tween the nuclei being considered.

4.2. Diffuseness Parameter of the Potential
and Cross Section for the Fusion of Nuclei

In order to describe various features of nuclear
reactions, the nuclear component of the nucleus–
nucleus potential is often parametrized in the Woods–
Saxon form [1–3, 7, 28–30, 32–34]

V (R) = −V0/{1 + exp[(R − Rpot)/a]}. (16)

For the diffuseness parameter a, it is therefore nec-
essary to determine a value at which the Woods–
Saxon potential is close to the realistic potential that
was found in the HF–BCS approximation by using
Skyrme forces. For this, we will determine the param-
eters V0, Rpot, and a in the potential (16) by fitting it
to the potential calculated in the ETF approximation
at the nucleon-density diffuseness of d = 0.55 fm for
distances R larger than the sum Rt of the radii of col-
liding nuclei. After that, the resulting value of Rpot is
fixed and used in fits to the potential found in the ETF
approximation at different values of the diffuseness
parameter of the nucleon-density distribution. In this
way, we have determined the dependences of a and V0

on d and plotted them in Fig. 7.
The diffuseness parameter a and the depth V0

of the Woods–Saxon potential grow almost linearly
with increasing diffuseness parameter d of the nu-
cleon densities (see Fig. 7). According to calculations
at large distances in the ETF approximation with
Skyrme forces, the diffuseness parameter a of the
nuclear component of the nucleus–nucleus potential
exceeds the diffuseness parameter d of the nucleon
distribution in interacting nuclei by a factor of about
1.5.
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As was indicated above, the potential found with
the nucleon densities in the form (15) at a nucleon-
distribution diffuseness of d ≈ 0.55 fm corresponds
at large distances to the potential obtained with the
Hartree–Fock nucleon-density distributions. The
corresponding value of the diffuseness parameter
of the Woods–Saxon potential is a ≈ 0.81 fm (see
Fig. 7).

Figure 8 shows the result obtained by fitting the
Woods–Saxon potential to the nuclear component of
the nucleus–nucleus potential calculated in the ETF
approximation at the density-distribution diffuseness
of d = 0.55 fm. At large distances, these potentials
agree well with each other, but, in the interior of the
nuclei, they are markedly different.

A value of a ≈ 0.81 fm, which we obtained for the
diffuseness parameter of the Woods–Saxon potential,
agrees well with that which was proposed earlier. For
example, a very close value of a = 0.788 fm was found
in [8] for the diffuseness parameter of the nucleus–
nucleus potential at large distances, while a some-
what smaller diffuseness value of a = 0.7176 fm was
obtained in [5]. From an analysis of elastic scatter-
ing of nuclei, Winther [7] deduced the value of a =
0.657 fm. It is very close to the value of a = 0.65 fm,
which was proposed by Bass in 1980 [1]. On the basis
of a systematic investigation of nuclear-fusion reac-
tions, Siwek-Wilczynska and Wilczynski [43] pro-
posed three values of the diffuseness parameter: a =
0.481 fm for light, a = 0.675 fm for medium-mass,
and a = 0.895 fm for heavy systems of interacting

nuclei. The analysis of data on the subbarrier fusion
of various nuclei in [32–36] led to a rather large dif-
fuseness value in the range a ≈ 0.8−1.5 fm, the result
obtained by studying the subbarrier fusion of 16O and
208Pb nuclei being a = 1.005 fm [36].

In the case of interactions of medium-mass and
heavy nuclei, diffuseness-parameter values that dif-
fer substantially from a ≈ 0.81 fm are not consis-
tent with realistic nucleon-density distributions in
nuclei or with realistic nucleon–nucleon forces. Nev-
ertheless, nucleon-density distributions in light nu-
clei are characterized by a thin diffuseness layer and
are frequently described by a Gaussian function [44].
Therefore, the diffuseness parameter a of the Woods–
Saxon potential can assume smaller values in the
case of nuclear interactions involving light and very
light nuclei. For example, the value of a = 0.4929 fm
was found in [45] for the diffuseness parameter of the
Woods–Saxon potential from an analysis of alpha
decay half-lives and cross sections for near-barrier
alpha-particle capture by medium-mass and heavy
nuclei. An analysis of various reactions induced by
12C + 13C and 12C + 13N collisions at near-barrier
energies also leads to diffuseness-parameter values
substantially smaller than a ≈ 0.81 fm [46].

In order to study the effect of diffuseness of the
potential on the cross section for near-barrier fusion,
we will perform calculations for the fusion of 16O and
208Pb nuclei on the basis of the CCFULL code [30].
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This code calculates fusion cross sections with al-
lowance for channel coupling to low-lying multipole
vibrational surface excitations in both nuclei. In this
calculation, the nuclear component of the nucleus–
nucleus potential is parametrized in the form of the
Woods–Saxon potential (16). The code takes into
account nonlinear effects of coupling to multiphonon
multipole excitations of the nuclear surface. The pa-
rameters of the 2+ and 3− excitations are required
for calculating the cross sections with the aid of the
CCFULL code. They were taken from relevant com-
pilations of experimental data in [47, 48]. The param-
eters of the nuclear-interaction potential were chosen
to be identical to those in Fig. 7. In Fig. 9, the results
of the calculations are contrasted against experimen-
tal data.

As can be seen from Fig. 9, potentials that were
calculated by using small values of the nucleon-
density diffuseness parameter d lead to a strong
underestimation of the fusion cross section over the
entire energy region. As the diffuseness parameter
d of the nucleon-density distribution increases, the
fusion cross section becomes larger, which is due to
the reduction of the fusion-barrier height. However,
the slope of the cross section at subbarrier energies
is virtually insensitive to variations in d. We note
that, here, we did not aim at describing fusion cross
sections since our main objective was to reveal the
relationship between the diffuseness of the density
distribution, the diffuseness of the Woods–Saxon
potential, and the fusion cross section.

A comparison of the Woods–Saxon potential with
the potential calculated in the ETF approximation
(see Fig. 8) and a comparison of fusion cross sections
calculated by using the Woods–Saxon potential with
relevant experimental data (see Fig. 9) indicate that
a realistic nuclear potential is poorly reproduced by
the Woods–Saxon form. Both small and large values
of the diffuseness parameter of the nucleon-density
distributions lead to an inadequate description of ex-
perimental data within the CCFULL model. We note
that, on the basis of the CCFULL code, one can
describe experimental data by simultaneously fitting
the parameters V0, Rpot, and a in (16) (for details,
see [36]). However, values found for V0, Rpot, and a
from such a fit do not comply with realistic nucleon-
density distributions and realistic nucleon–nucleon
forces.

5. CONCLUSIONS

Thus, we have calculated potentials of nucleus–
nucleus interaction within Hartree–Fock–Bardeen–
Cooper–Schrieffer theory and in the extended
Thomas–Fermi approximation, relying on various
assumptions on the nucleon-density distributions

in the ground states of the nuclei involved. The
potentials were calculated in the frozen-density ap-
proximation, which is applicable at collision energies
in the barrier region and above. The resulting bar-
rier heights agree well with various approximations
proposed previously for nucleus–nucleus interaction.
The approximation used to calculate the potentials
makes it possible to study in detail various properties
of nucleus–nucleus interaction in the vicinity of the
point at which colliding nuclei touch each other.

We have shown that a change in the isotopic com-
position of interacting nuclei affects substantially the
height and width of the fission barrier.

The diffuseness parameters of the nucleon-density
distributions in nuclei are tightly related to the
diffuseness parameter of the potential of nucleus–
nucleus interaction. The potential diffuseness pa-
rameter a is approximately 1.5 times greater than
the diffuseness parameter d of the nucleon-density
distribution and is close to 0.81 fm.

Values extracted from experimental data for the
diffuseness parameter of the charge-density distribu-
tion change from one nucleus to another, lying in the
range d ≈ 0.51−0.60 fm for medium-mass and heavy
nuclei (see Table 6.3 in [42]). By virtue of isotopic
symmetry, the diffuseness parameters of the neutron-
density distribution in medium-mass and heavy
spherical nuclei also fall within this interval. There-
fore, realistic values of the diffuseness parameter of
the potential may lie in the interval a ≈ 0.75−0.90 fm.
In the case of interaction between medium-mass and
heavy nuclei, the diffuseness parameter of the poten-
tial cannot assume either very small or very large
values. It follows that, if values markedly different
from those in the range a ≈ 0.75−0.90 fm are required
for describing experimental data within some model,
this means that the diffuseness parameters of the
nucleon-density distribution and other properties of
this distribution do not comply with realistic values or
that the proposed model describes inadequately the
mechanism of the reaction being considered.

It has been shown that the parametrization of the
nuclear component of the nucleus–nucleus interac-
tion in the Woods–Saxon form is unsatisfactory.
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