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Collective modes and response functions of relativistic asymmetric nuclear matter
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Response functions and collective modes for asymmetric nuclear matter (N > Z) are studied
by means of a relativistic kinetic equation. Nuclear matter is described by means of a field theory
of nucleons coupled to neutral, scalar (o), and vector (w) mesons and to charged vector mesons
(0). The contribution of the exchange terms to the nucleon-nucleon interaction is also taken into
account. Because of the exchange terms, the kinetic equation presents solutions which correspond to
oscillations of the spin density. Finally the effects of an excess of neutrons on the response functions

and on the collective modes are investigated.

It is found that a collective oscillation present in

symmetric nuclear matter disappears even for a small asymmetry (~ 5%).

PACS number(s): 21.65.+f

A relativistic approach to the study of nuclear dy-
namics known as quantum hadrodynamics (QHD) has
been developed in Refs. [1] and [2]. Various proper-
ties of nuclear matter have already been investigated in
the framework of this theory, however, in most of the
previous works collective modes and response functions
of symmetric (equal number of neutrons and protons,
N = Z) nuclear matter [3-7] and of neutron matter [8]
have been studied either in the simplified version of this
theory known as mean-field theory (MFT) or in the one-
loop approximation. In both cases only the direct terms
of nucleon-nucleon interaction have been taken into ac-
count. Moreover, the collective excitations and response
functions of nuclear matter have been studied only in the
isoscalar channel.

Here we investigate the response functions and collec-
tive excitations of cold nuclear matter by extending a
relativistic kinetic equation derived in a previous work
[9] to include isospin degrees of freedom. In such a way
we can study response functions and collective excita-
tions both in the isoscalar and isovector channels. The
kinetic equation of Ref. [9] has been derived in a mean-
field approximation within the framework of version I of
QHD (QHD-I) [1]; in the present calculations we also in-
clude the charged ¢ meson field in a phenomenological
way, similar to the MFT approach to QHD-II of Ref. [1].
Our study is extended also to asymmetric nuclear matter
in order to investigate possible new effects introduced by
an excess of neutrons and in order to provide a unified
description of nuclear matter and neutron stars.

We do take into account also the contribution of ex-
change terms to the mean field since, as shown in Ref. [9],
these terms play a crucial role. Actually, within a theory
where only scalar and vector mesons are considered, exci-
tation of spin-density collective modes in nuclear matter
is possible only if exchange terms are included. Moreover,
in models without charged meson fields, the isoscalar and
isovector channels are degenerate if the exchange terms
are neglected.
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The p meson field is treated in the same approximation
introduced in Ref. [9] for the neutral scalar o and vector
w mesonic fields: We assume that in the equations for
the mesonic fields the terms containing derivatives can be
neglected with respect to the mass terms (see Egs. (2.1)
of Ref. [9]). Therefore, in this approximation, the g-field
operator B#(z) is directly connected to the operator of
the isovector current density:

B (z) = 2¢¢(2)y*Ty(2), 1)

with 1 (z) the eight-component nucleon field, g, the -V
coupling constant, and m, the mass of the p meson.

The assumptions expressed by Eq. (1) and by the anal-
ogous equations for the neutral mesonic fields 0 and w
(Egs. (2.3) of Ref. [9]) limit the validity of our approach
to the region of small momentum transfer; however, we
are able to take into account several effects in a relativis-
tically covariant formulation of nuclear dynamics.

First, we briefly examine the particle distribution in
four-momentum space for the asymmetric nuclear matter
at equilibrium. The proton and neutron Fermi momenta
are pr, and pg,, respectively. Proceeding as in Ref. [9]
we obtain

Nay(p)

*2
\/pF1+M(1) \/p +M(1)

x&(n — fub® — /P2 + MR, (2a)

with M) = M* — f&b for the proton distribution, and

N(z)(P)=W9(\/P%2 M3 - \/P + M)

xS(I + fib® — o2 + M), (2b)
with M,

(2) = M* + fgb for the neutron distribution. The

quantities b and b° are given by the following expectation
values on the ground state

b= (P(z)T39(z)) (3a)

and
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b° = (P(z)137°%(x)). (3b)

The quantities TI° and M* are the isoscalar parts of the
fourth component of the kinetic momentum and of the
effective mass, respectively,

°=p° — fvps,
(4)
M*= M - fsps,

where ps and pp represent the scalar and baryon densi-
ties. The effective values of the isoscalar coupling con-
stants fs and fy and of the isovector coupling constants
f§ and fi, contain the contributions of exchange terms.
They are given by the combinations

- 3
fs= %fs + %fv + Efga
- 3
fv= %fs + va + Zf‘"
(5)
, 1, 1 1
fs= —'S'fs + Efv - E.fga

1 1 3
l—_ -— —_—
fv= 8fs+4fv+ 4fg,

with fy = (gv/mv)? fs = (gs/ms)?, and f, =
(9o/m,)?. We remark that in our approach both the
ground state and the dynamical properties are deter-
mined only by the ratios between the meson coupling
constants and the meson masses.

In our model the nucleon effective mass takes different
values for protons and neutrons. If the exchange terms
are neglected, the isovector coupling constant fg van-
ishes; in this case the effective masses of protons and neu-
trons would coincide even in asymmetric nuclear matter.
Moreover, it should be remarked that exchange terms
give rise to isovector contributions to the effective mass
and to the energy of nucleons, even without including
the charged meson field. The p field has the only effect
of changing the effective values of coupling constants.

In the nuclear case (N/Z =~ 1.5) the ratio M{,/M{,
differs from unity only by a few percent, but for a fixed
asymmetry, this ratio increases rapidly with the baryon
density. For densities and values of the asymmetry typ-
ical of neutron stars the difference between the effec-
tive masses of protons and neutrons cannot be neglected,
since in this case the value of M(*l) /M("z) can be as high
as ~ 2.5-3.

We choose the value of the coupling constants fy and
fs in order to reproduce the binding energy (15.75 MeV)
of saturated symmetric nuclear matter with a Fermi mo-
mentum of 1.3 fm~!. These values are

fs =3.18x107* MeV ™2, fi, =2.074 x 10~% MeV 2.
For the coupling constant f, we have taken the value
determined by the o — 27 decay

fo =155 x107° MeV~2,

With these values the symmetry energy and the bulk
modulus turn out to be ay = 42 MeV and K;l = 540
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MeV. This value of K ‘71 is substantially higher than the
commonly accepted experimental value of 200-350 MeV
[10]. However, it is very close to those obtained in the
Hartree or Hartree-Fock approximations of QHD with-
out nonlinear terms of the scalar field in the original
Lagrangian [11]. Our value of a4 instead is somewhat
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FIG. 1. Ratio of zero-sound velocities to the neutron Fermi
velocity vr, as a function of the asymmetry parameter c.
(a) Longitudinal current-density waves. (b) Longitudinal
spin-density waves. The solid line corresponds to isovector
waves. For isoscalar waves the result is shown only for a = 0
(#). The dashed line and the dot-dashed line correspond to
the velocities of neutron and proton waves, respectively, cal-
culated without the g field. (c¢) The same as in (b) but for
transverse spin-density waves.
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larger than that given by the Hartree-Fock approxima-
tion, a4 = 35 MeV [11]. This is because our approxi-
mation overestimates exchange contributions. However,
we notice that the value of a4 results from the mutual
subtraction of two very large terms, so that a relatively
small overestimate of each term can influence the value
of the symmetry energy appreciably.

Here we calculate the linear response functions of
asymmetric nuclear matter in the various spin-isospin
channels; therefore we add small external fields to the
nuclear mean field in the kinetic equation of Ref. [9].
Moreover, we consider isovector density fluctuations with
mr = 0 only; i.e., we do not study processes where a
neutron converts into a proton or vice versa. In a linear
approximation, oscillations with mz = +1 are decoupled
from those with my = 0.

Our approach is based on a semiclassical description of
nuclear matter dynamics, so that the nucleon densities
(scalar, vector, tensor, pseudovector, and pseudoscalar)
are assumed to be smooth functions of the space-time
coordinates. Within this approximation the equations for
the scalar and current densities are decoupled from those

for the pseudovector and tensor densities (see Ref. [9]).
Moreover, from the structure of the resulting equations
one can see that the oscillations in the direction of the
wave vector k are decoupled from transverse oscillations.

The first object of our investigation is the behavior
of the collective modes of nuclear matter as a function
of the asymmetry a = (N — Z)/(N + Z). We study
both current- and spin-density oscillations. The current-
density and the density oscillations are related by the
continuity equations for the electric and baryon currents.
The collective modes are characterized by their propaga-
tion velocity. As shown in Ref. [9], the collective solutions
do not depend on k° and |k| separately, but only on the
velocity v, = |k|/k°. This implies that these modes are
of the zero-sound type. In Fig. 1 the ratio of v, to the
neutron Fermi velocity vg, is plotted for the relevant
channels.

We note that current-density oscillations propagate
only through longitudinal waves, while in spin-density os-
cillations both longitudinal and transverse waves are pos-
sible. For symmetric nuclear matter the current-density
oscillations correspond to oscillations of the isovector
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FIG. 3. The same as Fig. 2, but for axial

response functions.
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density with mz = 0; i.e., neutrons and protons oscil-
late out of phase. For these waves an interesting feature
emerges from our relativistic calculations: the collective
solution survives for all values of a [see Fig. 1(a)]. This is
in contrast with the results of previous treatments of the
same subject based on the nonrelativistic Landau the-
ory of Fermi liquids [12,13]. The Landau theory predicts
that density oscillations become strongly damped beyond
a critical value of  (in Ref. [12] this has been shown to
occur for a > 0.6). This difference between our results
and those based on the Landau theory can be ascribed
to a relativistic effect.

As a general remark we notice that the neutron excess
plays a qualitatively similar role in all channels inves-
tigated: with increasing asymmetry the repulsive part
of the nucleon-nucleon interaction becomes softer and
softer. In the isoscalar case of the spin-density oscilla-
tions this is sufficient to make the collective mode be-
come a damped oscillation for a very small value of «
(ax ~ 0.05). The role played by the o meson, instead, de-
pends critically on the channel considered. For current-
density oscillations the o meson does not affect the results
appreciably, while in spin-density oscillations the p meson
changes qualitatively the behavior of results. This can
be appreciated from Figs. 1(b) and 1(c), where the zero-
sound velocities calculated with and without the o meson
are reported. Without the o meson the proton and neu-
tron spin-densities can oscillate independently; when the
o meson is included there is a coupling between the two
densities because nucleons can now exchange a charged
particle. The difference between the current- and spin-
density oscillations is due to the fact that for spin density
only the exchange terms contribute to the self-consistent
mean field.

We turn now to the response functions. They are de-
fined by

S(k) =~ TmI(k), ©)

where II(k) represents the polarization propagator in the
relevant particle-hole p-h channel.

In Figs. 2 and 3 we present four vector response func-
tions and four axial response functions, for three different
values of the asymmetry parameter a, which may be of
interest in the nuclear case. The collective modes have
not been shown in the figures; their positions and relative
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TABLE 1. Position (v,/vr,) and the relative strength (w)
of collective modes for the various channels. Channel 1 cor-
responds to isovector longitudinal oscillations of the current
density. Channels 2 and 3 correspond to longitudinal oscil-
lations of the spin density: isoscalar oscillations in channel 2
and isovector oscillations in channel 3. Channels 4 and 5 are
the same as channels 2 and 3, respectively, but for transverse
oscillations.

a=0.0 a=0.1 a=0.2
Channel v,/vF, w v, /VF, w v, /VUF, w
1 1.051 0.67 1.024 0.61 1.011 0.52
2 1.002 0.05
3 1.026 0.24 1.016 0.13 1.015 0.11
4 1.001 0.02
5 1.018 0.16 1.009 0.07 1.008 0.06

strengths, for the channels in which they occur, are sum-
marized in Table I. In our semiclassical approximation
the response functions display a sort of scaling property
in the sense that they do not depend on k° and |k| sep-
arately, but only on the ratio v, = k/|k|.

In the channels where collective modes occur, the re-
sponse functions show peaks that are more and more
pronounced with increasing neutron excess. This is be-
cause the position of the undamped modes approaches
the upper bound of the continuum of the p-h excitations
as the asymmetry increases. The neutron excess gives
rise to another effect that can be understood in a rather
straightforward way. It consists in the shift of the upper
bound of the p-h continuum (v, /vF, = 1) towards higher
values of v,. This is simply due to the increase of the
neutron Fermi velocity with increasing asymmetry. As a
general remark we observe that in all the channels the
total strength of the response function does not change
appreciably within the considered values of a. The effect
of the asymmetry consists essentially in redistributing
the strength of the response functions between collective
modes and the continuum of the p-h excitations with dif-
ferent weights.
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